Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Ahead of Print
    • Past Issues
    • Supplements
    • Article Type
    • Specialty
  • CME/MOC
    • Articles
    • Calendar
  • Info For
    • Manuscript Submission
      • 1-Minute Consult
      • Commentary
      • Current Drug Therapy
      • Editorial
      • Guidelines to Practice
      • Interpreting Key Trials
      • Letter to the Editor
      • Review
      • Smart Testing
      • Symptoms to Diagnosis
      • The Clinical Picture
    • Authors & Reviewers
    • Subscriptions
    • About CCJM
    • Contact Us
  • COVID-19
    • Curbside Consults Overview
    • Pulmonary/ICU
    • Patient Subsets & Specific Organ Involvement
    • Therapies
    • Imaging & Procedures
    • Patients with Underlying Disease
    • Virus Background & Testing
    • Healthcare System Practice
  • Conference Coverage
    • ASH Annual Meeting
    • AHA Sessions 2020
    • IDWeek 2020
    • CHEST 2020
    • ADA 2020
    • ACC 2020
  • Advertise
    • Media Kit
    • Contact
  • Other Publications
    • www.clevelandclinic.org

User menu

  • Register
  • Log in

Search

  • Advanced search
Cleveland Clinic Journal of Medicine
  • Other Publications
    • www.clevelandclinic.org
  • Register
  • Log in
Cleveland Clinic Journal of Medicine

Advanced Search

  • Home
  • Content
    • Current Issue
    • Ahead of Print
    • Past Issues
    • Supplements
    • Article Type
    • Specialty
  • CME/MOC
    • Articles
    • Calendar
  • Info For
    • Manuscript Submission
    • Authors & Reviewers
    • Subscriptions
    • About CCJM
    • Contact Us
  • COVID-19
    • Curbside Consults Overview
    • Pulmonary/ICU
    • Patient Subsets & Specific Organ Involvement
    • Therapies
    • Imaging & Procedures
    • Patients with Underlying Disease
    • Virus Background & Testing
    • Healthcare System Practice
  • Conference Coverage
    • ASH Annual Meeting
    • AHA Sessions 2020
    • IDWeek 2020
    • CHEST 2020
    • ADA 2020
    • ACC 2020
  • Advertise
    • Media Kit
    • Contact
Current Drug Therapy

The role of SGLT-2 inhibitors in managing type 2 diabetes

Yumiko Tsushima, MD, M. Cecilia Lansang, MD, MPH and Vinni Makin, MBBS, MD, FACE
Cleveland Clinic Journal of Medicine January 2021, 88 (1) 47-58; DOI: https://doi.org/10.3949/ccjm.88a.20088
Yumiko Tsushima
Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Cecilia Lansang
Director, Main Campus Department of Endocrinology, Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic; Professor of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vinni Makin
Director, East Region, Department of Endocrinology Diabetes, and Metabolism, Cleveland Clinic; Assistant Professor of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: makinv@ccf.org
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Neumiller JJ,
    2. White JR Jr.,
    3. Campbell RK
    . Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs 2010; 70(4):377–385. doi:10.2165/11318680-000000000-00000
    OpenUrlCrossRefPubMed
  2. ↵
    1. Bakris GL,
    2. Fonseca VA,
    3. Sharma K,
    4. Wright EM
    . Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 2009; 75(12):1272–1277. doi:10.1038/ki.2009.87
    OpenUrlCrossRefPubMed
  3. ↵
    1. Jabbour SA
    . SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem. Postgrad Med 2014; 126(1):111–117. doi:10.3810/pgm.2014.01.2731
    OpenUrlCrossRefPubMed
  4. ↵
    1. Nauck MA,
    2. Del Prato S,
    3. Meier JJ,
    4. et al
    . Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 2011; 34(9):2015–2022. doi:10.2337/dc11-0606
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Stenlöf K,
    2. Cefalu WT,
    3. Kim KA,
    4. et al
    . Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 2013; 15(4):372–382. doi:10.1111/dom.12054
    OpenUrlCrossRefPubMed
    1. Roden M,
    2. Weng J,
    3. Eilbracht J,
    4. et al
    . Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2013; 1(3):208–219. doi:10.1016/S2213-8587(13)70084-6
    OpenUrlCrossRefPubMed
  6. ↵
    1. Ferrannini E,
    2. Ramos SJ,
    3. Salsali A,
    4. Tang W,
    5. List JF
    . Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010; 33(10):2217–2224. doi:10.2337/dc10-0612
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Aronson R,
    2. Frias J,
    3. Goldman A,
    4. Darekar A,
    5. Lauring B,
    6. Terra SG
    . Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 2018; 20(6):1453–1460. doi:10.1111/dom.13251
    OpenUrlCrossRef
  8. ↵
    1. Cefalu WT,
    2. Leiter LA,
    3. Yoon KH,
    4. et al
    . Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013; 382(9896):941–950. doi:10.1016/S0140-6736(13)60683-2
    OpenUrlCrossRef
  9. ↵
    1. Häring HU,
    2. Merker L,
    3. Seewaldt-Becker E,
    4. et al
    . Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014; 37(6):1650–1659. doi:10.2337/dc13-2105
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Rosenstock J,
    2. Frias J,
    3. Páll D,
    4. et al
    . Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab 2018; 20(3):520–529. doi:10.1111/dom.13103
    OpenUrlCrossRef
  11. ↵
    1. Yale JF,
    2. Bakris G,
    3. Cariou B,
    4. et al
    . Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2013; 15(5):463–473. doi:10.1111/dom.12090
    OpenUrlCrossRefPubMed
    1. Wilding JP,
    2. Woo V,
    3. Soler NG,
    4. et al
    . Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 2012; 156:(6)405–415. doi:10.7326/0003-4819-156-6-201203200-00003
    OpenUrlCrossRefPubMed
  12. ↵
    1. Rosenstock J,
    2. Jelaska A,
    3. Frappin G,
    4. et al
    . Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 2014; 37(7):1815–1823. doi:10.2337/dc13-3055
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Woo VC,
    2. Berard LD,
    3. Bajaj HS,
    4. Ekoé JM,
    5. Senior PA
    . Considerations for initiating a sodium-glucose co-transporter 2 inhibitor in adults with type 2 diabetes using insulin. Can J Diabetes 2018; 42(1):88–93. doi:10.1016/j.jcjd.2017.01.009
    OpenUrlCrossRef
  14. ↵
    1. Einarson TR,
    2. Acs A,
    3. Ludwig C,
    4. Panton UH
    . Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 2018; 17(1):83. doi:10.1186/s12933-018-0728-6
    OpenUrlCrossRefPubMed
  15. ↵
    1. Kristensen SL,
    2. Preiss D,
    3. Jhund PS,
    4. et al
    . Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail 2016; 9(1):e002560. doi:10.1161/CIRCHEARTFAILURE.115.002560
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Kristensen SL,
    2. Mogensen UM,
    3. Jhund PS,
    4. et al
    . Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: a report from the I-Preserve Trial (Irbesartan in Heart Failure With Preserved Ejection Fraction). Circulation 2017; 135(8):724–735. doi:10.1161/CIRCULATIONAHA.116.024593
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Bertoni AG,
    2. Hundley WG,
    3. Massing MW,
    4. Bonds DE,
    5. Burke GL,
    6. Goff DC Jr.
    Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 2004; 27(3):699–703. doi:10.2337/diacare.27.3.699
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Vaur L,
    2. Gueret P,
    3. Lievre M,
    4. Chabaud S,
    5. Passa P,
    6. DIABHYCAR Study Group (type 2 DIABetes, Hypertension, CARdiovascular Events and Ramipril) study
    . Development of congestive heart failure in type 2 diabetic patients with microalbuminuria or proteinuria: observations from the DIABHYCAR (type 2 DIABetes, Hypertension, CArdiovascular Events and Ramipril) study. Diabetes Care 2003; 26(3):855–860. doi:10.2337/diacare.26.3.855
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Zinman B,
    2. Wanner C,
    3. Lachin JM,
    4. et al
    . Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22):2117–2128. doi:10.1056/NEJMoa1504720
    OpenUrlCrossRefPubMed
  20. ↵
    1. Neal B,
    2. Perkovic V,
    3. Mahaffey KW,
    4. et al
    . Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7):644–657. doi:10.1056/NEJMoa1611925
    OpenUrlCrossRefPubMed
  21. ↵
    1. Wiviott SD,
    2. Raz I,
    3. Bonaca MP,
    4. et al
    . Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4):347–357. doi:10.1056/NEJMoa1812389
    OpenUrlCrossRefPubMed
  22. ↵
    1. Cannon CP,
    2. Pratley R,
    3. Dagogo-Jack S,
    4. et al
    . Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 2020; 383(15):1425–1435. doi:10.1056/NEJMoa2004967
    OpenUrlCrossRefPubMed
  23. ↵
    1. Zelniker TA,
    2. Wiviott SD,
    3. Raz I,
    4. et al
    . SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166):31–39. doi:10.1016/S0140-6736(18)32590-X
    OpenUrlCrossRefPubMed
  24. ↵
    1. Kato ET,
    2. Silverman MG,
    3. Mosenzon O,
    4. et al
    . Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019; 139(22):2528–2536. doi:10.1161/CIRCULATIONAHA.119.040130
    OpenUrlCrossRefPubMed
  25. ↵
    1. Yancy CW,
    2. Jessup M,
    3. Bozkurt B,
    4. et al
    . 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013; 128(16):1810–1852. doi:10.1161/CIR.0b013e31829e8807
    OpenUrlFREE Full Text
  26. ↵
    1. McMurray JJV,
    2. Solomon SD,
    3. Inzucchi SE,
    4. et al
    . Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381(21):1995–2008. doi:10.1056/NEJMoa1911303
    OpenUrlCrossRef
  27. ↵
    1. US Food and Drug Administration (FDA)
    . FDA approves new treatment for a type of heart failure. www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-type-heart-failure. Accessed December 1, 2020.
  28. ↵
    1. Packer M,
    2. Anker SD,
    3. Butler J,
    4. et al
    . Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383(15):1413–1424. doi:10.1056/NEJMoa2022190
    OpenUrlCrossRef
  29. ↵
    1. Kosiborod M,
    2. Lam CSP,
    3. Kohsaka S,
    4. et al
    . Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol 2018; 71(23):2628–2639. doi:10.1016/j.jacc.2018.03.009
    OpenUrlFREE Full Text
  30. ↵
    1. Baartscheer A,
    2. Schumacher CA,
    3. Wüst RC,
    4. et al
    . Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017; 60(3):568–573. doi:10.1007/s00125-016-4134-x
    OpenUrlCrossRefPubMed
  31. ↵
    1. Uthman L,
    2. Baartscheer A,
    3. Bleijlevens B,
    4. et al
    . Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018; 61(3):722–726. doi:10.1007/s00125-017-4509-7
    OpenUrlCrossRef
  32. ↵
    1. Baartscheer A,
    2. Hardziyenka M,
    3. Schumacher CA,
    4. et al
    . Chronic inhibition of the Na+/H+ - exchanger causes regression of hypertrophy, heart failure, and ionic and electrophysiological remodelling. Br J Pharmacol 2008; 154(6):1266–1275. doi:10.1038/bjp.2008.189
    OpenUrlCrossRefPubMed
  33. ↵
    1. Kang S,
    2. Verma S,
    3. Teng G,
    4. et al
    . Direct effects of empagliflozin on extracellular matrix remodeling in human cardiac fibroblasts: novel translational clues to EMPA-REG outcome. Can J Cardiol 2017; 33(10):S169. doi:10.1016/j.cjca.2017.07.330
    OpenUrlCrossRef
  34. ↵
    1. USRDS
    . ESRD quarterly update. www.usrds.org/esrd-quarterly-update. Accessed December 2, 2020.
  35. ↵
    1. Naylor KL,
    2. Kim SJ,
    3. McArthur E,
    4. Garg AX,
    5. McCallum MK,
    6. Knoll GA
    . Mortality in incident maintenance dialysis patients versus incident solid organ cancer patients: a population-based cohort. Am J Kidney Dis 2019; 73(6):765–776. doi:10.1053/j.ajkd.2018.12.011
    OpenUrlCrossRefPubMed
  36. ↵
    1. Wen CP,
    2. Chang CH,
    3. Tsai MK,
    4. et al
    . Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int 2017; 92(2):388–396. doi:10.1016/j.kint.2017.01.030
    OpenUrlCrossRefPubMed
  37. ↵
    1. Perkovic V,
    2. Jardine MJ,
    3. Neal B,
    4. et al
    . Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380(24):2295–2306. doi:10.1056/NEJMoa1811744
    OpenUrlCrossRefPubMed
  38. ↵
    1. Nespoux J,
    2. Vallon V
    . SGLT2 inhibition and kidney protection. Clin Sci (Lond) 2018; 132(12):1329–1339. doi:10.1042/CS20171298
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Wanner Ch,
    2. Inzucchi SE,
    3. Zinman B
    . Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375(18):1801–1802. doi:10.1056/NEJMc1611290
    OpenUrlCrossRefPubMed
  40. ↵
    1. Mosenzon O,
    2. Wiviott SD,
    3. Cahn A,
    4. et al
    . Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 2019; 7(8):606–617. doi:10.1016/S2213-8587(19)30180-9
    OpenUrlCrossRefPubMed
  41. ↵
    1. American Diabetes Association
    . 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care 2020; 43(suppl 1):S98–S110. doi:10.2337/dc20-S009
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Heerspink HJL,
    2. Karasik A,
    3. Thuresson M,
    4. et al
    . Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol 2020; 8(1):27–35. doi:10.1016/S2213-8587(19)30384-5
    OpenUrlCrossRef
  43. ↵
    1. Ruggenenti P,
    2. Porrini EL,
    3. Gaspari F,
    4. et al
    . Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care 2012; 35(10):2061–2068. doi:10.2337/dc11-2189
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Heerspink HJ,
    2. Perkins BA,
    3. Fitchett DH,
    4. Husain M,
    5. Cherney DZ
    . Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016; 134(10):752–772. doi:10.1161/CIRCULATIONAHA.116.021887
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Cherney DZI,
    2. Cooper ME,
    3. Tikkanen I,
    4. et al
    . Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int 2018; 93(1):231–244. doi:10.1016/j.kint.2017.06.017
    OpenUrlCrossRefPubMed
  46. ↵
    1. Hollander P,
    2. Bays HE,
    3. Rosenstock J,
    4. et al
    . Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care 2017; 40(5):632–639. doi:10.2337/dc16-2427
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Castellana M,
    2. Cignarelli A,
    3. Brescia F,
    4. et al
    . Efficacy and safety of GLP-1 receptor agonists as add-on to SGLT2 inhibitors in type 2 diabetes mellitus: a meta-analysis. Sci Rep 2019; 9(1):19351. doi:10.1038/s41598-019-55524-w
    OpenUrlCrossRef
  48. ↵
    1. Ranjbar G,
    2. Mikhailidis DP,
    3. Sahebkar A
    . Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: think out of the box!. Metabolism 2019; 101:154001. doi:10.1016/j.metabol.2019.154001
    OpenUrlCrossRef
  49. ↵
    1. Genc H,
    2. Dogru T,
    3. Kara M,
    4. et al
    . Association of plasma visfatin with hepatic and systemic inflammation in nonalcoholic fatty liver disease. Ann Hepatol 2013; 12(4):548–555. pmid:23813132
    OpenUrlPubMed
  50. ↵
    1. Bolinder J,
    2. Ljunggren Ö,
    3. Kullberg J,
    4. et al
    . Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 2012; 97(3):1020–1031. doi:10.1210/jc.2011-2260
    OpenUrlCrossRefPubMed
  51. ↵
    1. Möller K,
    2. Ostermann AI,
    3. Rund K,
    4. et al
    . Influence of weight reduction on blood levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and oxylipins in obese subjects. Prostaglandins Leukot Essent Fatty Acids 2016; 106:39–49. doi:10.1016/j.plefa.2015.12.001
    OpenUrlCrossRef
  52. ↵
    1. Kushiyama A,
    2. Tanaka K,
    3. Hara S,
    4. Kawazu S
    . Linking uric acid metabolism to diabetic complications. World J Diabetes 2014; 5(6):787–795. doi:10.4239/wjd.v5.i6.787
    OpenUrlCrossRefPubMed
  53. ↵
    1. Fralick M,
    2. Chen SK,
    3. Patorno E,
    4. Kim SC
    . Assessing the risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: a population-based cohort study. Ann Intern Med 2020; 172(3):186–194. doi:10.7326/M19-2610
    OpenUrlCrossRef
  54. ↵
    1. US Food and Drug Administration (FDA)
    . FDA removes boxed warning about risk of leg and foot amputations for the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). www.fda.gov/drugs/drug-safety-and-availability/fda-removes-boxed-warning-about-risk-leg-and-foot-amputations-diabetes-medicine-canagliflozin. Accessed December 2, 2020.
  55. ↵
    1. Bersoff-Matcha SJ,
    2. Chamberlain C,
    3. Cao C,
    4. Kortepeter C,
    5. Chong WH
    . Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: a review of spontaneous postmarketing cases. Ann Intern Med 2019; 170(11):764–769. doi:10.7326/M19-0085
    OpenUrlCrossRefPubMed
  56. ↵
    1. Handelsman Y,
    2. Henry RR,
    3. Bloomgarden ZT,
    4. et al
    . American Association of Clinical Endocrinologists and American College of Endocrinology Position Statement on the association of SGLT-2 INHIBITORS and diabetic ketoacidosis. Endocr Pract 2016; 22(6):753–762. doi:10.4158/EP161292.PS
    OpenUrlCrossRefPubMed
  57. ↵
    1. Ogawa W,
    2. Sakaguchi K
    . Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. J Diabetes Investig 2016; 7(2):135–138. doi:10.1111/jdi.12401
    OpenUrlCrossRefPubMed
  58. ↵
    1. Kibbey RG
    . SGLT-2 inhibition and glucagon: Cause for alarm? Trends Endocrinol Metab 2015; 26(7):337–338. doi:10.1016/j.tem.2015.05.011
    OpenUrlCrossRefPubMed
  59. ↵
    1. Thiruvenkatarajan V,
    2. Meyer EJ,
    3. Nanjappa N,
    4. Van Wijk RM,
    5. Jesudason D
    . Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: a systematic review. Br J Anaesth 2019; 123(1):27–36. doi:10.1016/j.bja.2019.03.028
    OpenUrlCrossRef
  60. ↵
    Drug Topics. FDA approves label changes to SGLT2 inhibitors. https://www.drugtopics.com/view/fda-approves-safety-labeling-changes-sglt2-inhibitors. Accessed November 2, 2020.
  61. ↵
    1. Garber AJ,
    2. Handelsman Y,
    3. Grunberger G,
    4. et al
    . Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2020 Executive Summary. Endocr Pract 2020; 26(1):107–139. doi:10.4158/CS-2019-0472
    OpenUrlCrossRef
  62. ↵
    1. Dandona P,
    2. Mathieu C,
    3. Phillip M,
    4. et al
    . Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: the DEPICT-1 52-week study. Diabetes Care 2018; 41(12):2552–2559. doi:10.2337/dc18-1087
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Rosenstock J,
    2. Marquard J,
    3. Laffel LM,
    4. et al
    . Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE Trials. Diabetes Care 2018; 41(12):2560–2569. doi:10.2337/dc18-1749
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Henry RR,
    2. Thakkar P,
    3. Tong C,
    4. Polidori D,
    5. Alba M
    . Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care 2015; 38(12):2258–2265. doi:10.2337/dc15-1730
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Garg SK,
    2. Henry RR,
    3. Banks P,
    4. et al
    . Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N Engl J Med 2017; 377(24):2337–2348. doi:10.1056/NEJMoa1708337
    OpenUrlCrossRefPubMed

This article requires you to have a ccjm.org account to view the full text. If you already have an account, you may log in below to view this article along with all other CCJM content. If you do not have an account, register here. It’s free!

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

Registration is Now Required for Free Access to CCJM Content

Register once and log in for full access to articles and content. Click “Register” in the upper right corner and follow the simple instructions to create a new account.

If you are using a mobile device, click on the settings icon to access the Register link.

In this issue

Cleveland Clinic Journal of Medicine: 88 (1)
Cleveland Clinic Journal of Medicine
Vol. 88, Issue 1
1 Jan 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Cleveland Clinic Journal of Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of SGLT-2 inhibitors in managing type 2 diabetes
(Your Name) has sent you a message from Cleveland Clinic Journal of Medicine
(Your Name) thought you would like to see the Cleveland Clinic Journal of Medicine web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The role of SGLT-2 inhibitors in managing type 2 diabetes
Yumiko Tsushima, M. Cecilia Lansang, Vinni Makin
Cleveland Clinic Journal of Medicine Jan 2021, 88 (1) 47-58; DOI: 10.3949/ccjm.88a.20088

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The role of SGLT-2 inhibitors in managing type 2 diabetes
Yumiko Tsushima, M. Cecilia Lansang, Vinni Makin
Cleveland Clinic Journal of Medicine Jan 2021, 88 (1) 47-58; DOI: 10.3949/ccjm.88a.20088
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Linkedin Share Button

Jump to section

  • Article
    • ABSTRACT
    • SODIUM-GLUCOSE COTRANSPORTER-2
    • EFFECT ON GLYCEMIC CONTROL
    • EFFECT ON CARDIOVASCULAR OUTCOMES
    • POSSIBLE MECHANISMS OF CARDIOVASCULAR BENEFIT
    • EFFECT ON RENAL OUTCOMES
    • MECHANISM OF RENAL PROTECTION
    • EFFECT ON METABOLIC OUTCOMES
    • STUDIES IN NONALCOHOLIC FATTY LIVER DISEASE (NAFLD)
    • ADVERSE EFFECTS OF SGLT-2 INHIBITORS
    • REVIEW OF THE GUIDELINES
    • FUTURE DIRECTIONS
    • DISCLOSURES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • SGLT-2 inhibitors: A new era in managing diabetic kidney disease starts now
  • Google Scholar

More in this TOC Section

  • Prescribing testosterone and DHEA: The role of androgens in women
  • CGRP antagonists for decreasing migraine frequency: New options, long overdue
Show more Current Drug Therapy

Similar Articles

Subjects

  • Nephrology
  • Obesity
  • Preventive Care
  • Vascular Medicine
  • Endocrinology
  • Drug Therapy
  • Diabetes
  • Cardiology

Navigate

  • Current Issue
  • Past Issues
  • Supplements
  • Article Type
  • Specialty
  • CME/MOC Articles
  • CME/MOC Calendar
  • Media Kit
  • Advertise Contact

Info For

  • Manuscript Submission
  • Authors & Reviewers
  • Subscriptions
  • Advertisers
  • About CCJM
  • Contact Us
  • Cleveland Clinic Center for Continuing Education
  • Consult QD

Share your suggestions!

Copyright © 2021 The Cleveland Clinic Foundation. All rights reserved. The information provided is for educational purposes only. Use of this website is subject to the website terms of use and privacy policy. 

Powered by HighWire