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• T h e effects of estrogenic steroid hormones in women are apparent, but the circulating androgen levels 
are much higher. Compared with serum estrone and estradiol levels, circulating testosterone levels are five 
to 10 times higher, androstenedione levels 3 0 times higher, dehydroepiandrosterone levels 100 times 
higher, and dehydroepiandrosterone sulfate levels 4 0 , 0 0 0 times higher. Androgen production in women is 
physiologically appropriate, but it differs from other hormonal systems in that there seem to be no mech-
anisms controlling the serum levels. Androgens are produced almost incidentally from reproductive and 
ACTH-adrena l axes. N o distinct feedback systems have been identified for the androgens, although the 
lifetime patterns of changes, particularly of adrenal androgens, suggest that such systems should exist. Nor-
mal androgenesis from the two axes and the mechanisms of androgen action are described, as an introduc-
tion to abnormal androgen action in women. 
• INDEX TERM: ANDROGENS • CLEVECLIN] MED 1990; 57:161-166 

THE OVARIES AND ADRENALS both man-
ufacture androgens from free cholesterol. 
Most cholesterol is derived from intracellular 
stores of cholesterol or circulating low-density 

lipoprotein cholesterol interiorized through receptor 
pits on the membrane.1 The steroid hormones are syn-
thesized in both the ovary and the adrenals by modifying 
the basic cholesterol molecule in a series of enzymatic 
steps.2,3 Two parallel pathways permit synthesis of the 
androgens dehydroepiandrosterone (DHEA) and an-
drostenedione. Testosterone, the estrogens, and dehy-
droepiandrosterone sulfate (DHEAS) are then derived 
by further metabolism from these precursor compounds. 
The major adrenal products are Cortisol and aldosterone; 
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the most important ovarian products are estrogens and 
progesterone. The adrenal gland produces no significant 
quantities of estrogen or progesterone, and the ovary 
produces no Cortisol or aldosterone. While the basic syn-
thetic pathways of androgens are similar, there are con-
siderable differences in the process and control of 
steroidogenesis in the sites. 

ANDROGEN PRODUCTION IN THE 
HYPOTHALAMIC-PITUITARY-OVARIAN AXIS 

Reproductive function in women is coordinated 
through the hormonal changes of the menstrual cycle, a 
biological rhythm that integrates the development and 
release of a mature ovum with structural and functional 
changes in the uterus, cervix, and fallopian tubes. In the 
absence of pregnancy, the menstrual flow occurs on an 
approximately monthly basis as the external expression 
of the repetitive functioning of the hypothalamic-pitui-
tary-ovarian axis. The regulation of ovarian function is 
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mediated through the release of gonadotropin-releasing 
hormone (GnRH) that controls the secretion of 
luteinizing hormone (LH) and follicle-stimulating hor-
mone (FSH) from the pituitary gland. LH and FSH are, 
in turn, directly responsible for selection and maturation 
of the dominant follicle, ovulation, and luteinization of 
the follicle. Accompanying the anatomical changes is a 
series of well-coordinated fluctuations in circulating 
levels of ovarian steroid hormones, particularly estradiol 
and progesterone. These hormones are responsible for 
the development of the endometrium, and their with-
drawal toward the end of the cycle leads to the shedding 
of the lining of the uterus. 

Androgen production in the ovary is a continuing 
function of ovarian stromal cells and occurs in the tem-
porary endocrine gland in the developing follicle as a 
function of thecal cells. In both sites, androgen produc-
tion is the result of the LH action via receptors in the 
membrane, which are continually present on stromal 
cells and are found on the developing thecal cells.4 FSH 
receptors are found on mature granulosa cells but are not 
developed in immature cells.5 Granulosa cells lack a 17-
20 lyase and thus cannot manufacture androgens.2"3,6 

FSH induces in the granulosa cells the aromatase 
enzyme that converts androgens to estrogens.7"10 The 
androgens produced in the thecal cells serve as precur-
sors for the production of estradiol in the granulosa cells. 
Estradiol is manufactured as part of a two-step, two-
gonadotropin, two-cell procedure. Androgenic precur-
sors are manufactured in the thecal cell, stimulated by 
LH. The androgens, predominantly androstenedione, 
cross the basement membrane into the granulosa cells to 
be transformed by the aromatase enzyme into estrogens, 
predominantly estradiol for local use and for the sys-
temic circulation. It seems that androgens are released 
or escape into circulation but play little significant role 
in the feedback control of GnRH-gonadotropin release 
in normal circumstances. 

The control of androgen production in the ovary is 
mostly the result of LH action. Other hormones have a 
permissive role, but there is little good evidence of a 
direct role for any hormone other than prolactin,11 

which may also be involved in the regulation of adrenal 
androgenesis. However, there are no clear regulatory 
mechanisms other than LH. 

ANDROGEN PRODUCTION IN THE ACTH-ADRENAL AXIS 

The location of androgen production in the adrenal 
gland is generally described as the reticularis, but sub-
stantial quantities of DHEAS, DHEA, testosterone, and 

androstenedione are found in both the zona fasciculata 
and the reticularis.12,13 In the reproductive-age adult, the 
adrenal cortex produces androstenedione and DHEA in 
episodic bursts that are synchronous with ACTH-corti-
sol release.14-16 Administration of ACTH elevates both 
hormones together with Cor t i so l . 1 7 The sulfate ester of 
DHEA has a half-life exceeding 24 hours and a clear-
ance rate that is not affected by age.18,19 

In contrast to the other androgens, DHEAS has no 
significant circadian variations.14,16 However, DHEAS 
does increase in response to ACTH, albeit more slowly 
than the other adrenal androgenic hormones.20 There-
fore, although it is without significant androgenic activ-
ity, DHEAS has proven useful as a marker for adrenal 
androgen production. 

The increase in the basal values of these hormones 
and their capacity to respond to ACTH occur prior to 
and during early puberty, reach a maximum during adult 
life, and fall again with advancing age.21-24 In contrast, 
neither ACTH nor C o r t i s o l has any significant fluctua-
tions matching the lifetime chronological patterns of 
the adrenal androgenic hormones.25,26 The ability to re-
spond to ACTH and the loss of that ability correspond 
with the acquisition and loss of microsomal 17-hydroxy-
lase and 17-20 desmolase in the adrenal cortex.27 

The coordination of adrenarche as part of puberty 
suggests that at least one non-local factor is important in 
adrenal androgen regulation. A pituitary "cortical 
androgen-stimulating hormone" was proposed because 
A C T H administered to individuals with hypopitui-
tarism was capable of stimulating a normal Cortisol re-
sponse, but the adrenal androgen response was consider-
ably reduced.28 In a comparable animal model, bovine 
pituitary extract produces a relatively greater androgen-
stimulating effect in castrated hypophysectomized dogs 
than ACTH alone.29,30 The nature of the factor remains 
obscure, although in vitro evidence has further defined 
its characteristics. 

Other pituitary hormones have been considered. Ele-
vated prolactin levels have been linked to increased 
androgen levels during reproductive life, and both hir-
sutism and a syndrome similar to polycystic ovarian dis-
ease have been described with hyperprolactinemia.31,32 

Growth hormone may, in part, regulate intrauterine 
adrenal androgen production.33 However, other evi-
dence linking either growth hormone or prolactin to 
adrenal androgenesis during adult life is scant, and 
neither hormone has long-term changes matching the 
chronological pattern of adrenal androgens throughout 
life. Other pituitary products, such as endogenous opi-
ates and alpha-melanocyte-stimulating hormone, have 
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also been linked with regulation of androgen production 
by the adrenal, but the evidence supporting these hor-
mones as modulators of adrenal androgenesis is scant. 

The most clear chronological relationship is between 
adrenal androgens and reproductive status; therefore, 
pituitary-ovarian relationships have been evaluated 
with particular interest. The enzymes induced at puberty 
decline following menopause.27 Gonadotropins have no 
direct effect on adrenal androgen synthesis, nor is there 
any relationship between adrenal androgens and 
gonadotropins in the agonadal individual.34 Early in 
vitro and in vivo evidence suggested that estrogen may 
increase adrenal androgen levels."-37 The levels of 
DHEAS and other androgens fall in old age to approxi-
mately 20% of reproductive age values. Therefore, to es-
tablish separate relationships, gonadal function must be 
considered as a factor independent of age. This was in-
vestigated in women with impaired gonadal function 
throughout and beyond the normal reproductive age 
range. It was clear that DHEAS levels were significantly 
lower in women with premature ovarian failure and 
castration during the reproductive age range and even in 
women with hypothalamic amenorrhea when compared 
to control women with normal reproductive function.24 

The levels did, however, decrease further with increas-
ing age so that levels in postmenopausal women were 
lower than in reproductive age women with ovarian 
failure. The levels in castrated women in the post-
menopausal age range were the lowest of all the groups, 
suggesting that even at this age the gonad is important 
in the regulation of sex-steroid manufacture in the 
adrenal. Lobo et al38 provided evidence that estradiol 
pellet insertion at the time of castration prevented a 
decrease in the adrenal androgens. Others investigating 
at various times throughout the reproductive age range 
have denied such an effect.39-42 All of these studies were, 
however, of relatively short duration. Cumming et al24 

demonstrated that 10 years of estrogen therapy makes 
no difference to circulating DHEAS levels compared 
with a control group of similar age that had received no 
estrogen therapy in the previous 10 years. 

One final problem in accepting estrogen as an adrenal 
androgen-stimulating hormone comes from the early in-
vestigations in vitro, in which it was demonstrated that 
estrogen had an inhibitory effect on the delta 4-5 isom-
erase/3(3-ol dehydrogenase enzyme.35-43 This would be 
likely to elevate DHEA but not androstenedione. The 
period of enhanced adrenal responsiveness is associated 
with the presence of microsomal 17 hydroxylase and 17-
20 desmolase promoting the production of all androgens 
on both the pathways.27 This raises the intriguing possi-
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bility that the ovary may produce a nonsteroidal sub-
stance that influences sex-steroid synthesis in the 
adrenal.24 However, this remains unproven. Other fac-
tors such as body composition44 and physical exercise45 

may also influence DHEAS levels independent of 
gonadal function; all of these areas remain to be ex-
plored further. 

CONTRIBUTIONS FROM T H E OVARY AND ADRENAL 

Assessments of the relative contributions of the ovary 
and the adrenal are based on a number of methods, none 
of them particularly accurate. The methods include ex-
amination of serum levels of patients without adrenal 
glands46 or ovaries,24 direct cannulation, evaluation of 
lifetime patterns of change as previously described, and 
stimulation and suppression tests of the specific organ 
concerned.24'46"18 The most commonly accepted figures 
suggest that testosterone, androstenedione, and dihy-
drotestosterone are derived about half each from the 
ovary and the adrenal.47 Conversely, DHEA and 
DHEAS are respectively 80% and 95+% derived from 
adrenal.47 Therefore, DHEAS has tended to replace 
17KS as a measure of adrenal function, particularly as 
levels are stable with little diurnal variation or monthly 
cyclic variations.49,50 

However, the situation is further complicated since 
circulating androgens can be derived from direct secre-
tion and/or peripheral metabolism of other sex 
steroids.47,51 Thus it is generally accepted that almost all 
of the dihydrotestosterone and about half of the circulat-
ing testosterone is derived from conversion of precursors 
already in circulation. Dihydrotestosterone is derived 
from androstenedione and testosterone while conver-
sion of androstenedione is responsible for almost all of 
the testosterone arising from peripheral sources. Almost 
all androstenedione, DHEA, and DHEAS come from 
direct secretion. There is no understanding of what con-
trols the peripheral conversion of steroids, nor is it clear 
whether the conversion can occur in the liver, lungs, 
skin, or fat. 

If samples are taken daily through the cycle, basal-
and dexamethasone-suppressed testosterone and an-
drostenedione vary with cyclic changes of estrogen.47 It 
seems odd that 10 to 100 times more androgen may 
"leak out" just to permit estrogens to be manufactured. 
However, there does not appear to be any significant 
feedback of androgens on LH levels in the normally 
menstruating woman. Administration of human 
chorionic gonadotropin acting as an LH substitute in-
creases testosterone levels.52 Surprisingly, perhaps, dihy-
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drotestosterone shows little diurnal variation through 
the cycle, either basal or when suppressed with dex-
amethasone.48 In contrast, DHEA and DHEAS show 
little menstrual variation.48 

ANDROGENS IN CIRCULATION 

Androgens in circulation are influenced by protein 
binding. The 17(3 sex steroids (testosterone, dihydro-
testosterone, and estradiol) are bound selectively to sex-
hormone-binding globulin (SHBG). Testosterone also 
binds in a nonspecific manner to capillary blood glucose 
and albumin while a small amount is biologically free. 
SHBG preferentially binds testosterone so that altera-
tions in the level of SHBG produce a differential effect 
on the biologically available free levels of estradiol.53 In-
creasing levels of SHBG produce relatively lower quan-
tities of free testosterone v estradiol while decreasing 
SHBG levels produce relatively larger quantities of free 
testosterone v estradiol. The system, therefore, may act 
as an amplifier of biological activity. The levels of 
SHBG change with a number of influences. Increased 
values occur with estrogens and thyroxine while andro-
gens (including androgenic gestagens) and excess quan-
tities of Cort isol and growth hormone decrease SHBG 
production. 

It remains to be determined what proportion of the 
circulating testosterone is biologically available; that is, 
which proportion can cross the membranes into the tar-
get cell. The half-disassociation time of albumin-testost-
erone is sufficient to permit substantial cross-membrane 
transfer of albumin-bound testosterone within its time 
of capillary transit.54 Increasing evidence supports the 
conclusion that non-SHBG-bound testosterone rather 
than free (that is, unbound to either albumin or SHBG) 
may be better correlated with androgen activity.55,56 

MODE OF ACTION AND CLEARANCE OF ANDROGENS 

When testosterone crosses into the cell, it is con-
verted into dihydrotestosterone by 5 a reductase, binds 
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