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New strategies in nonantibiotic 
treatment of gram-negative sepsis 
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• Gram-negative bacterial infections are difficult to control and often lead to septic shock or septic 
syndrome. Many physiologic changes in sepsis are due to bacterial triggering of host responses. 
Improved understanding of these mechanisms has led to new treatment modalities that aim to block 
the runaway inflammatory process of sepsis. New therapeutic agents are currently being evaluated in 
animal and human studies. By combining these advances with adequate antibiotic therapy, it may be 
possible to improve overall survival in patients with gram-negative sepsis. 
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BROAD-SPECTRUM ANTIBIOTIC treat-
ment of infections has improved consider-
ably in the last 20 years. Physicians are more 
aware of the early warning signs of infection 

and are better equipped to diagnose them. A more ex-
tensive arsenal of therapies is available to prevent in-
fection from progressing to septic shock and death. 
However, even though gram-positive infections can be 
readily controlled, gram-negative bacteria remain a 
difficult problem, particularly when nosocomial in na-
ture.1 

Although antibiotics are important in treating 
gram-negative infections, they have limited efficacy 
when the infection is severe.2'3 In the 5-year period 
from 1977 to 1981, mortality in 1,186 episodes of 
gram-negative bacteremia was 36.3%, a rate com-
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parable to that in 1924—before the advent of sul-
fonamides and antibiotics. Mortality rates are especial-
ly high in nosocomial lung infections: up to 70% in 
patients with Pseudomonas pneumonia and 33% in 
patients with pneumonia due to other gram-negative 
bacteria. Pneumonia caused by gram-positive species 
has a mortality of only 5%.4,5 

The incidence of gram-negative sepsis in the United 
States is estimated to range from 300,000 to 800,000 
cases per year, with associated mortality rates up to 
75%. When shock occurs in association with sepsis, 
the mortality rate increases to 85% to 90%.6 The need 
for additional therapeutic agents for sepsis is clear. 

Recent innovations in medical practice and their 
consequences may have increased the likelihood of 
sepsis and septic shock7; these include aggressive on-
cologic chemotherapy, corticosteroid or immunosup-
pressive therapy for organ transplantation or inflam-
matory diseases, increased survival of patients 
predisposed to sepsis, and more frequent use of invasive 
medical procedures.7,8 In addition, the escalating num-
ber of patients with AIDS contributes to the rising 
incidence of sepsis. 
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Many of the physiologic changes in sepsis that lead 
to irreversible tissue injury and death are due to bac-
terial triggering of host responses.9 Specifically, 
deleterious consequences of sepsis are related, at least 
in part, to host production of proinflammatory 
cytokinesis, which initiates a cascade of events that 
may eventually lead to irreversible tissue injury and 
lethal hypotension (Figure 1). Approaches designed to 
intervene in this chain of events include nonspecific 
suppression of host responses with glucocorticoids.10,11 

While animal studies using glucocorticoids have 
shown promise in the treatment of sepsis, two large 
randomized clinical trials have failed to show efficacy. 

N E W T R E A T M E N T M O D A L I T I E S 

Improved understanding of disease mechanisms is 
fueling much research on sepsis syndrome and multiple 
organ failure. A number of new treatment modalities 
for sepsis are being evaluated in animal and human 
studies (Table). A brief summary of their applications 
follows. 

Opioid antagonists 
Naloxone, an opioid antagonist, has emerged as an 

alternative therapeutic agent for severe sepsis. Al-
though not yet approved by the Food and Drug Ad-
ministration in this context, naloxone is effective in 
reversing endotoxin-mediated hypotension by block-
ing ^-endorphins.12,13 In a canine model of endotoxic 
shock, cardiac output increases after opioid an-
tagonism; however, the physiologic mechanism for this 
effect has not yet been established.14,15 Human studies 
with naloxone have demonstrated increased mean 
arterial pressure and improved hemodynamic profile in 
a subgroup of patients with severe early hyperdynamic 
septic shock, but evidence of naloxone's influence on 
survival is equivocal.16-18 In the late stages of septic 
shock, naloxone has little effect; factors contributing 
to this decreased effectiveness include acidemia and 
hypothermia. Furthermore, the pressor effect of 
naloxone is seriously blunted by concomitant steroid 
administration. 

Nonsteroidal anti-inflammatory drugs 
Several other agents have been used in attempts to 

block the inflammatory reaction and the production of 
inflammatory mediators. In animal models of gram-
negative sepsis, ibuprofen improves hemodynamics, 
reverses lactic acidosis, and increases survival.19,20 In 
the dog, indomethacin and aspirin appear to improve 
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the outcome of sepsis21 (perhaps through their ability 
to block cyclooxygenase), improve neutrophil bac-
tericidal activity, and improve cell-mediated im-
munity. In cats, most of the pulmonary effects of en-
dotoxin are completely abolished when inhibitors of 
cyclooxygenase (eg, indomethacin, meclofenamate, 
flurbiprofen) are administered in doses that prevent 
the generation of prostaglandin F2a and thromboxane 
A2.22 Prophylactic or therapeutic administration of 

NOVEMBER • DECEMBER 1992 CLEVELAND CLINIC J O U R N A L OF MEDICINE 609 

 on April 27, 2024. For personal use only. All other uses require permission.www.ccjm.orgDownloaded from 

http://www.ccjm.org/


G R A M - N E G A T I V I ; SEPSIS • C O H N A N D B O N E 

TABLE 
EXPERIMENTAL NON-ANTIBIOTIC THERAPIES 
FOR GRAM-NEGATIVE SEPSIS 

Opioid antagonists 
Nonsteroidal anti-inflammatory drugs 
Prostaglandin Ei 
Pentoxifylline 
Surfactant replacement 
Antioxidants 
Antibodies to endotoxin 
Monoclonal antibodies to tumor necrosis factor 
Interleukin-1 receptor antagonists 
Platelet activating factor antagonists 
Leukotriene inhibitors 

ibuprofen, even at high doses, does not modulate the 
increase in pulmonary microvascular permeability 
(which may be amplified by cyclooxygenase products 
at early stages) that follows endotoxin administra-
tion.23 In a preliminary report on the use of rectally 
administered ibuprofen in 30 septic syndrome patients, 
there were improvements in blood pressure, heart rate, 
and minute ventilation, but no effect on gas ex-
change.24 Clinical trials continue, and any potential 
role for ibuprofen or nonsteroidal anti-inflammatory 
drugs in sepsis syndrome has yet to be defined. 

Prostaglandin El 
Bacteremia is commonly associated with the 

development of adult respiratory distress syndrome 
(ARDS). Prostaglandin Ei includes among its actions 
the ability to inhibit leukocyte aggregation and the 
release of lysosomal enzymes and free radical oxygen 
species, and to reduce lung vascular permeability. In 
some clinical trials in the management of ARDS, pros-
taglandin Ei improves perfusion abnormalities and sur-
vival.25,26 However, in a recent multicenter trial of 
ARDS patients, this agent did not improve outcome.26 

The toxicity associated with the use of prostaglandin 
Ei was significant and included fever, diarrhea, 
hypotension, and supraventricular arrhythmias. 

Pentoxifylline 
Pentoxifylline is another agent that holds promise 

for the treatment of sepsis and ARDS. Pentoxifylline 
has diverse anti-inflammatory properties that reduce 
lung edema and protein leak. It increases survival in 
experimental animals with acute lung injury and septic 
shock.27"29 Pentoxifylline also depresses neutrophil 
function in an inflammatory state but not in the "rest-
ing state." It decreases neutrophil superoxide produc-
tion, granulation, and adherence to endothelial cells 

and other cell surfaces, and it increases neutrophil 
chemotaxis. In addition, pentoxifylline decreases 
tumor necrosis factor (TNF) production by macro-
phages.30 Since pentoxifylline is effective in animal 
models of sepsis, a clinical trial in septic patients seems 
warranted. 

Surfactant replacement 
A large multicenter clinical trial is evaluating 

whether surfactant replacement has a role in treating 
ARDS. Injured lungs in sepsis show diffuse interstitial 
and alveolar edema. Loss of surfactant function would 
be expected to promote alveolar collapse, leading to 
loss of lung volume, shunt, and hypoxemia—major 
features of the pathophysiology of ARDS. At least one 
study has shown that lung surfactant function and 
chemical composition are altered in ARDS.31 In addi-
tion, diminished surface tension within alveoli may 
protect against the development of alveolar edema, 
and loss of surfactant function might promote alveolar 
edema.32,33 In phase II clinical trials of 2,000 infants 
given a synthetic lung surfactant to treat respiratory 
distress, the overall mortality rate was reduced from 
51% to 31%.34 However, another large multicenter 
randomized trial demonstrated no difference in sur-
vival in spite of rapid improvement in oxygenation and 
ventilation and a lower incidence of pneumothorax.35 

Health and human services officials believe artificial 
surfactants are responsible for an 8% drop in infant 
mortality rate in the United States between 1989 and 
1991. Randomized placebo-controlled dose ranging 
studies involving 100 adult patients with sepsis-in-
duced-ARDS demonstrated that the gas exchange 
function of the lungs consistently improved in the 
surfactant treated groups. Moreover, the mortality rate 
of the placebo group was 50%, and the most effective 
dose of surfactant had a 25% mortality rate.36 

Antioxidants 
Another approach to treating inflammatory lung 

injury is to block specific substances thought to 
mediate tissue damage. Antioxidant therapy with N-
acetylcysteine or with liposome-encapsulated an-
tioxidant catalase and superoxide dismutase 
ameliorates experimental lung injury due to sepsis.37,38 

A clinical trial of N-acetylcysteine in human subjects 
is currently underway. One uncontrolled study showed 
beneficial effects of tocopherol (vitamin E), but this 
remains to be confirmed.39 

In a rat model of endotoxemia, the hydroxyl ion 
scavenger dimethylthiourea appeared to prevent in-
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creases in extravascular lung water after perfusion with 
activated polymorphonuclear leukocytes.40 In cannu-
lated pigs, dimethylthiourea markedly attenuates al-
terations in cardiovascular and pulmonary membrane 
permeability caused by endotoxemia.41 However, in a 
sheep model this compound had no effect on the early 
cardiovascular responses.42 Furthermore, a major disad-
vantage of dimethylthiourea compared with enzymatic 
antioxidants is its limited capacity to scavenge oxygen 
metabolites. 

Metal chelating agents may be effective an-
tioxidants because they bind transition metals such as 
iron, thereby inactivating their catalytic participation 
in the generation of hydroxyl ions. Iron chelation 
therapy has not been investigated in acute lung disor-
ders largely because of the toxicity of available agents. 
A new generation of iron chelating agents, with intes-
tinal absorption adequate for oral administration and 
preferential reactions with parenchymal iron deposits, 
may be more suitable for human studies.43,44 

Antibodies to endotoxin 
Much of the morbidity associated with gram-nega-

tive infections, including vascular collapse and death, is 
caused by lipid A (Figure 2), the biologically active 
component of bacterial lipopolysaccharide. Antibiotics 
cannot prevent the toxic effects of lipid A, and they 
may even promote its release from bacteria.45 The clini-
cal significance of this is that when antibiotics kill 
gram-negative organisms, endotoxin may remain active 
for an additional 12 hours—more than enough time in 
which to exert its detrimental systemic effects. 

A promising new approach to treating gram-nega-
tive infections is passive immunotherapy with an-
tibodies directed against cross-reactive core deter-
minants on lipopolysaccharide.46,47 As with all the 
agents described thus far, this approach employs the 
basic tactic of interfering with injury by one of the 
following mechanisms: (1 ) reducing neutrophil 
chemoattraction and aggregation in the pulmonary 
capillary bed; (2) modulating neutrophil behavior to 
prevent release of free radical oxygen species, 
proteases, and arachidonic acid metabolites; or 3) 
decreasing the quantity of toxic substances released by 
neutrophils or other cells, tissues, or organisms. 

A 1982 study of patients with sepsis who were 
treated with a combination of antibiotics and human 
antisera directed against the J5 antigen of endotoxin 
demonstrated that mortality caused by gram-negative 
sepsis with shock decreased from 77% to 44%.48 Other 
investigators subsequently found that postoperative ad-
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FIGURE 2. A. Structure of the outer membranes (lipopolysac-
charides) of enteric bacteria. The "O" antigen side chains of 
repeating monosaccharide units are linked to lipid A through a 
"core" structure consisting of N-acetylglucosamine (GLcNa-
C), glucose (Glu), galactose (Gal), heptose (Hep), phosphate 
(P), ethanolamine (EtN), and 2-keto, 3-deoxyoctonate (KDO). 
Chemotype mutants of increasing "roughness," such as "Ra" 
and "Rc," result from the progressive deletion of sugars from 
the outer to the inner core. The E coli core region contains two 
KDOs. B. The chemical structure of the lipid A component of 
E coli, S minnesota, and P mirabilis contains two N-acetyl 
glucosamine residues (GlcN). The numbers in circles indicate 
the number of carbon atoms in the acyl chains. The distribu-
tion of normal fatty acids is highly specific and characteristic 
for the bacterial genus. From Mandell GL, Douglas RG, Ben-
nett JE. Principles and practice of infectious diseases. New 
York: Churchill Livingstone Inc, 1990:618, with permission. 

ministration of anti-J5 antiserum given prophylactical-
ly could effectively reduce the incidence of septic shock 
in surgical patients. In one study where im-
munoglobulin G antiserum was used, there was a 
dramatic reduction in peripartum septic shock from 
47% to 7%, accompanied by rapid increase in blood 
pressure and reduction in hospital stay.4'' However, the 
difficulty in obtaining large supplies of antibody and the 
risks associated with the administration of pooled 
human plasma have prevented this agent from being 
used extensively. 
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Monoclonal antibody techniques circumvent this 
problem and allow large quantities of human 
monoclonal immunoglobulin M (IgM) antibody to be 
produced. Human monoclonal IgM antibody (HA-
1A) binds to the lipid A domain of endotoxin.50 In a 
multicenter trial involving more than 500 patients, 
HA-1A reduced mortality and organ failure in patients 
with gram-negative bacteremia (with or without 
shock).51 E5, a murine-derived but "humanized" IgM 
monoclonal antibody to the J5 mutant, was effective in 
a randomized, placebo-controlled, multicenter trial.52 

Treatment with E5 reduced mortality and more effec-
tively prevented multiorgan failure in all patients with 
gram-negative infection without refractory shock, 
compared with patients given placebo. A second E5 
study examined patients with gram-negative sepsis and 
evidence of organ failure but not in refractory shock. 
This treatment did not affect overall survival but did 
affect the resolution and development of organ 
failure.53 Both monoclonal antibodies were well 
tolerated and safe, yet in both studies sizeable sub-
groups of patients did not benefit from therapy. This 
suggests that a broader spectrum of immunotherapy for 
patients with sepsis would be desirable. 

Monoclonal antibodies to TNF 
Several lines of evidence clearly link TNF-alpha to 

physiologic events that occur during sepsis and septic 
shock. When injected into animals, TNF-alpha leads 
to hemodynamic collapse, multiple organ injury, and a 
life-threatening vascular leak syndrome.9,54,55 Several 
studies have shown that antibodies to TNF-alpha, 
even when given after septic shock has begun, may 
protect animals against lethal doses of endotoxin.56-58 

Similar trials are currently being conducted in humans 
with sepsis syndrome and ARDS. More than 35 
patients in phase I clinical studies have received TNF-
alpha murine monoclonal antibody. In one of these 
studies, 14 patients with severe septic shock responded 
to this therapy by a marked increase in mean arterial 
pressure; no adverse effects were noted,59 and overall 
survival was not affected. Thus far in the multicenter 
phase II trials with the murine monoclonal antibody to 
TNF there has been no effect on mortality.59 

Interleukin'l receptor antagonists 
Interleukin-1 serum levels increase in animals and 

humans who have received endotoxin or who have 
septic shock.60,61 An interleukin-1 receptor antagonist 
that has been cloned and expressed inhibits some of 
the biologic activities of interleukin-1 in animals. 

More importantly, it appears to prevent endotoxin-
and Escherichia coil-induced shock in rabbits and 
mice.62,63 In a recent, small, prospectively randomized 
trial, the interleukin-1 receptor antagonist reduced 
mortality in patients with sepsis syndrome from 44% to 
16%. These phase II trials also showed a clear dose-
response curve, with the highest dose tested achieving 
a 64% reduction in mortality versus placebo.64 Phase 
III clinical trials in patients with this agent are current-
ly underway and are due to be completed this year. 

Platelet activating factor antagonists 
Platelet activating factor, a potent phospholipid 

generated after phospholipase activation, has a variety 
of actions that are relevant to the pathogenesis of 
shock, including thromboxane- and adenosine 
diphosphate-independent platelet and neutrophil ag-
gregation (leading to thrombocytopenia and 
neutropenia), chemotaxis, systemic hypotension, 
myocardial depression (bradycardia, reduced cardiac 
output), and pulmonary changes (eg, increased airway 
resistance and reduced lung compliance).65'66 In cer-
tain experimental models, pretreating animals with 
relatively specific platelet activating factor receptor 
antagonists prevents some endotoxin-induced chan-
ges and improves survival.67-71 Until platelet activat-
ing factor antagonists are shown to have beneficial 
effects in humans, the potential applications for these 
drugs are speculative. 

Leukotriene inhibitors 
As with platelet activating factor, most of the 

evidence suggesting a role for leukotrienes in the vas-
cular changes of sepsis comes from infusion studies, 
although a few studies have directly measured 
lipoxygenase products in septic animals.72-78 Also, in 
animal studies, there are reports that 5-lipoxygenase 
inhibitors and leukotriene receptor antagonists have 
beneficial effects in endotoxemia.78-82 Because this class 
of inhibitors has shown safety and efficacy in clinical 
trials for other inflammatory indications, it is likely 
that clinical trials will soon begin for gram-negative 
sepsis. 

CONCLUSION 

Aside from the therapies described in this article, 
newer approaches are still in early stages of animal 
experimentation. These include nitric oxide synthesis 
inhibitors, lipid A-like molecules that antagonize LPS, 
and monoclonal antibodies to polymorphonuclear 
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leukocyte CD11/CD18 adhesion molecules.83"90 It is 
too early to know whether these will have any clinical 
application. 

New treatment modalities for gram-negative sepsis 
have developed from an improved understanding of 
disease mechanisms. The agents described above rep-
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