Methotrexate has become the agent of choice for rheumatoid arthritis that does not respond to nonsteroidal anti-inflammatory drugs. In appropriately selected patients and with diligent monitoring, methotrexate in low weekly doses is effective and has a much better safety profile than was originally perceived.

In theory, methotrexate can interact with many other medications, but with low, weekly doses (7.5 to 15 mg), very few of these interactions are of clinical importance. More than half of patients experience side effects, but only about 15% need to stop taking methotrexate within 5 years because of severe toxicity. Many side effects are manageable with dosage adjustment and exclusion of factors that may increase toxicity. The most common side effects are gastrointestinal (nausea, dyspepsia, diarrhea, anorexia, and oral ulcers). About one in five patients who take a cumulative dose of 3 grams of methotrexate progress at least one grade on liver biopsy, and about one in 35 develop advanced pathologic changes. The risk of advanced fibrosis is 2.5 to 5 times higher in patients who use alcohol heavily. Methotrexate is teratogenic and must be avoided by women unwilling to use effective birth control. Fewer than 5% of patients taking methotrexate develop bone marrow suppression.

We advise our patients to take folic acid supplements (1 mg daily), to reduce methotrexate-related side effects.
Since first used for childhood leukemia in the 1940s, methotrexate has become the most widely used antimetabolite for cancer chemotherapy. Its use in rheumatic diseases has developed more slowly. Aminopterin, an analog of methotrexate, was used in 1951 to treat a few patients with rheumatoid arthritis and psoriasis. By the early 1970s, several reports had suggested that methotrexate was effective in refractory rheumatoid arthritis. However, few patients with rheumatoid arthritis received methotrexate until the 1980s, when many reports convincingly established its efficacy in low oral doses given once weekly.

Drug interactions

In theory, methotrexate can interact with many other medications, but with low, weekly doses, very few of these interactions are of clinical importance (Table 1). Patients taking methotrexate should avoid antifolate antibiotics such as trimethoprim-sulfamethoxazole, as the combination has been associated with rare incidents of pancytopenia. Because methotrexate is partly bound to serum proteins, it can potentially displace (or be displaced by) other drugs that bind to these proteins, such as phenytoin, tetracycline, sulfonamides, and sulfonylureas. Since renal clearance of methotrexate involves renal tubular secretion, concomitant use of probenecid should be avoided. Aspirin decreases methotrexate’s renal excretion, but to a small and clinically unimportant degree in patients taking methotrexate in low doses. The impact of other NSAIDs on methotrexate’s toxicity also appears negligible in patients with rheumatoid arthritis.

Mechanisms of action

Methotrexate, a folic acid analog, is well absorbed from the gastrointestinal tract in doses of up to 20 mg. Food does not affect the bioavailability of low oral doses. The peak serum concentration is achieved in 1 to 2 hours, and approximately half of a dose is bound to plasma albumin. Methotrexate’s half-life in the circulation is 8 hours, and 80% to 90% is excreted unchanged in the urine within 24 hours.

Multiple studies have found methotrexate more effective than placebo in treating rheumatoid arthritis. Its beneficial effect varies from modest to substantial; it rarely produces remissions, but 50% to 75% of patients taking it experience clinically important improvement, as reflected by patient and physician assessment, decreased joint swelling and pain, and decreased 50-foot walking time. Approximately half of patients who methotrexate to inhibit cell division explains its efficacy in cancer chemotherapy. At low doses, methotrexate has been shown to reduce mononuclear cell proliferation in vitro. Other studies have shown that low doses also inhibit the release or synthesis of inflammatory cytokines such as interleukin and leukotrienes and can induce endothelial cells and fibroblasts to release adenosine, which in turn has powerful anti-inflammatory effects.

HISTORY

Since first used for childhood leukemia in the 1940s, methotrexate has become the most widely used antimetabolite for cancer chemotherapy. Its use in rheumatic diseases has developed more slowly. Aminopterin, an analog of methotrexate, was used in 1951 to treat a few patients with rheumatoid arthritis and psoriasis. By the early 1970s, several reports had suggested that methotrexate was effective in refractory rheumatoid arthritis. However, few patients with rheumatoid arthritis received methotrexate until the 1980s, when many reports convincingly established its efficacy in low oral doses given once weekly.

PHARMACOLOGY

Methotrexate, a folic acid analog, is well absorbed from the gastrointestinal tract in doses of up to 20 mg. Food does not affect the bioavailability of low oral doses. The peak serum concentration is achieved in 1 to 2 hours, and approximately half of a dose is bound to plasma albumin. Methotrexate’s half-life in the circulation is 8 hours, and 80% to 90% is excreted unchanged in the urine within 24 hours.

EFFICACY

Multiple studies have found methotrexate more effective than placebo in treating rheumatoid arthritis. Its beneficial effect varies from modest to substantial; it rarely produces remissions, but 50% to 75% of patients taking it experience clinically important improvement, as reflected by patient and physician assessment, decreased joint swelling and pain, and decreased 50-foot walking time. Approximately half of patients who
TABLE 2
TOXICITIES OF LOW, WEEKLY DOSAGE OF METHOTREXATE

<table>
<thead>
<tr>
<th>Toxicities</th>
<th>Frequency</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>10%</td>
<td>Spread dose out over 24 hours</td>
</tr>
<tr>
<td>(nausea, diarrhea,</td>
<td></td>
<td>Assure compliance with folic acid supplementation</td>
</tr>
<tr>
<td>anorexia, stomatitis)</td>
<td></td>
<td>Give methotrexate intramuscularly</td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
<td>Decrease dose or discontinue treatment</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>4%</td>
<td>Search for causes of bone marrow suppression (drugs, infection)</td>
</tr>
<tr>
<td>Anemia</td>
<td>1%</td>
<td>Assure compliance with folic acid supplementation</td>
</tr>
<tr>
<td>Pulmonary (pneumonitis)</td>
<td>< 2%</td>
<td>Stop methotrexate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluate for infectious cause</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Give steroids in high doses</td>
</tr>
<tr>
<td>Hepatic</td>
<td></td>
<td>Discontinue methotrexate</td>
</tr>
<tr>
<td>Liver function test</td>
<td>5%</td>
<td>Evaluate for other hepatotoxins</td>
</tr>
<tr>
<td>values > 3 times normal</td>
<td></td>
<td>Decrease methotrexate dose by half</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluate for other hepatotoxins</td>
</tr>
<tr>
<td>Liver function test</td>
<td>10%</td>
<td>Perform liver biopsy (see Figure)</td>
</tr>
<tr>
<td>values 2 to 3 times normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistently elevated aspartate</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>aminotransferase (AST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concentration, depressed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>serum albumin concentration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

take methotrexate experience at least a 50% reduction in joint pain and swelling.4 Rheumatoid nodules tend to shrink with methotrexate use,14 but in some cases the nodules may become more prominent or extensive.34

The clinical response to methotrexate has been compared favorably with that induced by other second-line agents. Methotrexate is more effective than oral gold,30,32,33 azathioprine,33,35 or hydroxychloroquine.30 It is at least as effective as parenteral gold and is less toxic.30,36 Pooled data suggest that methotrexate, penicillamine, and sulfasalazine have similar effectiveness.30 This type of analysis likely underestimates the efficacy of methotrexate, which, more often than the other drugs, has been tested in patients with severe and long-standing disease.30

One advantage of methotrexate over other second-line agents is its relatively rapid onset of action.31 In contrast to parenteral gold or hydroxychloroquine, which can take up to 6 months to produce improvement, methotrexate usually begins to work within 3 to 6 weeks.34,35 The maximal effect at a given dosage is usually evident by 8 weeks.

It is not certain whether methotrexate, or any agent for that matter, alters the long-term course of rheumatoid arthritis. Most studies suggest that erosions continue to develop during methotrexate use.7,13,31,37-39 However, long-term methotrexate use does maintain symptomatic improvement and allows important reductions in prednisone dosage.40-42 In one study, more than 80% of patients who had an initial response continued to enjoy symptomatic improvement 7 years later, and half of them were able to discontinue taking prednisone.42 The efficacy of methotrexate in rheumatoid arthritis extends to the elderly population: Wolfe and Cathey43 showed that patients older than 65 years had at least as much improvement with methotrexate as did younger patients.

More than half of patients who take methotrexate in low doses for rheumatoid arthritis experience side effects31,40-42,44; however, clinical studies show that only about 15% of patients need to stop taking it within 5 years because of severe toxicity.32,41,44 Many of the side effects described below can be managed by adjusting the dosage and by excluding factors that may increase toxicity (Table 2).

Gastrointestinal toxicity

The most common side effects are related to the gastrointestinal tract and include nausea, dyspepsia,
Hepatotoxicity

When methotrexate's efficacy was "rediscovered" in the early 1980s, fear of hepatotoxicity constrained its widespread use. Early worries were fueled by reports in which more than 20% of psoriasis patients who took methotrexate for 5 years developed significant hepatic disease, as determined by liver biopsy. Fortunately, these rates have not been seen in patients with rheumatoid arthritis. The most widely used classification system for histologic changes on liver biopsy was developed by Roenigk and colleagues for psoriasis patients treated with methotrexate (Table 3). There appear to be no clinical adverse effects at grade I, II, or IIIA. Grades IIIB and IV (moderate to severe fibrosis and cirrhosis, respectively) are much more strongly associated with clinical hepatic dysfunction.

Longitudinal studies of rheumatoid arthritis patients in the United States report a consistently low rate of fibrosis. In one review, more than 700 patients underwent surveillance biopsies, and 8% had evidence of mild fibrosis (grade IIIA) after receiving a median cumulative dose of methotrexate of 1.5 grams (roughly 3 years of therapy). A meta-analysis of 636 patients from 15 studies showed that about one in five patients who received 3 grams (a dose achieved after about 4 years at 15 mg/week or 8 years at 7.5 mg/week) progressed at least one grade on liver biopsy, and about one in 35 (2.7%) developed advanced pathologic changes (grade IIIB or IV). The risk of advanced fibrosis was 2.5 to 5 times higher in patients who used alcohol heavily (more than 100 grams per week). This underscores the importance of restricting alcohol use in patients taking methotrexate.

It should be emphasized that most patients who develop hepatic damage have mild changes, chiefly grade II or IIIA. Indeed, clinical liver failure has been so rare that it has been almost exclusively confined to case reports. A recent survey of American rheumatologists placed the risk of clinically serious liver disease at one case per 1000 patients per 5 years of methotrexate therapy.

Hematologic toxicity

Bone marrow depression develops in fewer than 5% of patients who take methotrexate. This can occur in the form of megaloblastic anemia, leukopenia, thrombocytopenia, or pancytopenia. The most common of these is leukopenia, which typically occurs in conjunction with other events that may suppress the bone marrow (ie, infection, folate deficiency, or concomitant use of other folate antagonists such as trimethoprim-sulfamethoxazole). Mild cytopenia usually reverses rapidly after methotrexate is stopped. In the case of overdosage or severe cytopenia, high doses of folinic acid may accelerate recovery.

Pulmonary toxicity

Acute pulmonary inflammation is an important but rare and poorly understood manifestation of methotrexate toxicity, occurring in fewer than 2% of patients. This appears to be an idiosyncratic reaction that can occur at any cumulative dose. Pre-existing pulmonary disease and concurrent tobacco use may be risk factors. Tests that monitor pulmonary function do not predict the development of this complication.

Patients with methotrexate-induced pulmonary toxicity present with flu-like symptoms, fever, non-
productive cough, and hypoxemia. Although the chest radiograph may be normal initially, most patients soon develop diffuse bilateral interstitial infiltrates. The pathologic findings are nonspecific, frequently demonstrating a hypersensitivity pneumonitis with lymphocytic infiltrates with or without an admixture of eosinophils. Treatment requires prompt recognition, evaluation for possible infection, discontinuation of methotrexate, and administration of corticosteroids in high parenteral doses. Most patients rapidly improve; however, fatal respiratory failure may occur.

Secondary malignancies
There have been recent, isolated reports of lymphoproliferative malignancies in patients with rheumatoid arthritis who were taking methotrexate. In two reported cases, lymphomas were associated with Epstein-Barr virus infection in patients taking methotrexate for rheumatoid arthritis and dermatomyositis. These lymphomas resolved with discontinuation of methotrexate. A recent retrospective study showed that, although hematologic malignancies (lymphoma, leukemia, and myelodysplastic syndromes) do occur in rheumatoid arthritis patients taking methotrexate, they are rare and the risk is no higher than that in rheumatoid arthritis patients taking other disease-modifying drugs. Although the risk of secondary malignancy with methotrexate appears very low, the oncogenic consequences of long-term methotrexate use have not yet been well studied.

Central nervous system toxicity
Various central nervous system side effects have been reported on rare occasions. These consist primarily of headache and dizziness, and less often, transient mood alterations and memory impairment. These effects reverse when the drug is reduced in dosage or discontinued.

Immunosuppression
Various infections have been reported, typically in immunosuppressed patients receiving low doses of methotrexate. Many of these patients were also taking corticosteroids. The most common infection appears to be herpes zoster, there have also been cases of Pneumocystis carinii pneumonia, cryptococcosis, and nocardiosis. These infections, though rare, underscore the importance of diligently seeking an infectious source in patients who present with acute pulmonary compromise.

<table>
<thead>
<tr>
<th>Reducing toxicity with folate supplementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Several studies have suggested that folate (1 mg daily) or folic acid (2.5 to 5 mg once per week, 24 hours after the methotrexate dose) both reduce methotrexate-related side effects without affecting efficacy. This was confirmed in a recent trial comparing folic acid supplementation (5 or 27.5 mg/week) with placebo during methotrexate therapy for rheumatoid arthritis. Both dosages of folic acid equally prevented toxicity. To date, no controlled trial comparing folic acid and folinic acid has been published. We currently advise our patients to take folic acid supplements (1 mg daily), which are cheaper than weekly doses of folinic acid.</td>
</tr>
</tbody>
</table>

Using Methotrexate

Indications
Methotrexate is indicated for rheumatoid arthritis that does not respond well to NSAIDs. Many rheumatologists have concluded that methotrexate’s favorable balance of efficacy over toxicity makes it the most attractive second-line agent for most patients with rheumatoid arthritis. Although this review is confined to its role in rheumatoid arthritis, methotrexate has also been increasingly used in treating vasculitis (especially Wegener’s granulomatosis and Takayasu’s arteritis) systemic lupus erythematosus, psoriatic arthritis, Reiter’s syndrome, and other conditions.

Contraindications and patient education
The baseline evaluation should include the history, a physical examination, a complete blood
Standard baseline tests, including:

- Aspartate aminotransferase (AST)
- Alanine aminotransferase (ALT)
- Alkaline phosphatase
- Serum albumin
- Serum bilirubin
- Hepatitis B and C titers
- Complete blood count
- Serum creatinine

If patient has:

- Previous excessive alcohol consumption, or
- Persistently abnormal AST values, or
- Chronic hepatitis infection

If Roenigk grade I, II, or IIIA

Perform liver biopsy

Monitor serum AST, ALT, and albumin concentrations every 4 to 8 weeks

If five of nine AST determinations are abnormal (six of 12 if tests are performed monthly), or serum albumin decreases below normal range (in setting of well-controlled rheumatoid arthritis)

Continue methotrexate if Roenigk grade I, II, or IIIA

Perform liver biopsy

Stop methotrexate if patient refuses liver biopsy

If Roenigk grade IIIb or IV

FIGURE. American College of Rheumatology recommendations for monitoring for hepatic safety in rheumatoid arthritis patients receiving methotrexate. Adapted from Kremer et al, reference 83.

Dosage and monitoring

Starting treatment. Most patients start with 7.5 mg (three 2.5-mg tablets) once per week. Smaller initial doses may be appropriate for patients over age 65. Folic acid supplements (1 mg/day) are also started, as discussed above. After starting therapy, the patient should be monitored clinically for symptoms of gastrointestinal intolerance and pulmonary toxicity. Gastrointestinal upset may improve if the pills are taken with food or if the dose is divided to provide 2.5 mg every 12 hours. For the
few patients with intolerable gastrointestinal effects, giving the same dose by subcutaneous or intramuscular injection is usually well tolerated and effective. Any pulmonary symptoms should be evaluated quickly and thoroughly. The complete blood count, serum creatinine concentration, and liver function tests (including aspartate aminotransferase, alanine aminotransferase, and serum albumin concentrations) should be monitored every 4 to 8 weeks. If neutropenia or thrombocytopenia develop, therapy should be discontinued until they resolve.

Monitoring liver function. If the results of liver function tests increase to more than three times the upper limit of normal, methotrexate should be stopped and not restarted until the abnormalities resolve. Other possible reasons for the liver function abnormalities, such as alcohol use or other hepatotoxic drugs, should be considered and eliminated. The physician should verify that the patient is taking folate supplements. If liver function test results are two to three times the upper limit of normal, the methotrexate dose should be halved every monitoring period until the abnormalities remit. For lesser elevations, dose reductions should be considered if the abnormalities persist.

When to perform a biopsy. The most recent guidelines from the American College of Rheumatology (Figure) suggest that a liver biopsy be obtained if continued treatment is planned and if aspartate aminotransferase levels are abnormal in six of 12 (or five of nine) blood determinations in a year or if the serum albumin concentration decreases below the normal range without a known cause. If the liver biopsy shows Roenigk grade I, II or IIIA, then methotrexate may be continued with cautious monitoring. If the biopsy shows grade IIIB or IV changes, methotrexate should be stopped. In the absence of any liver function test abnormalities, the risks of liver biopsy probably exceed the benefit of detecting the rare case of significant liver fibrosis.

Adjusting for nonresponse. If tolerated, the initial dosage should be continued for 4 to 6 weeks. If the patient does not show any response by then, the dose can be increased. Most patients will tolerate an immediate doubling of the dose to 15 mg taken once per week. Elderly or frail patients may require a more gradual dose escalation. Oral doses of more than 20 mg per week are poorly absorbed. Methotrexate may be given parenterally in cases in which higher dosages are deemed necessary to assure adequate bioavailability. However, only physicians familiar with parenteral methotrexate administration should attempt it.

Managing favorable responses. If the disease responds favorably, the methotrexate dosage is kept constant for at least 6 months. Although most patients treated with methotrexate experience improvement, few have complete remission. The observation that most patients experience a “flare” when methotrexate is stopped provides further testimony to methotrexate’s efficacy. Some patients whose symptoms have been stable for 6 months, will, however, tolerate a slow and modest reduction in dosage.

SUMMARY

Although methotrexate has been available for nearly 50 years, its use in rheumatoid arthritis has become common only in the last decade. It is now the treatment of choice for most patients with rheumatoid arthritis that fails to respond to NSAIDs. Many careful studies and analyses conducted over the last 20 years have heightened enthusiasm for methotrexate. These have shown that, in appropriately selected patients and with diligent monitoring, methotrexate in low doses is effective and has a much better safety profile than was originally perceived.

REFERENCES