Caring for patients with prosthetic heart valves

ABSTRACT

Patients with prosthetic heart valves require regular examinations and echocardiograms, antithrombotic therapy, and appropriate antibiotic prophylaxis against endocarditis. Physicians must also be on the alert for several uncommon but potentially devastating complications: valve structural failure, thrombosis, embolism, endocarditis, paravalvular leak, and hemolytic anemia.

KEY POINTS

Doppler echocardiography should be performed regularly to monitor left ventricular function and valve structure and to screen for stenosis or regurgitation.

Auscultation can identify many valvular problems.

Antithrombotic therapy is begun shortly after implantation. Goals are different for different valve types.

Patients with prosthetic valves require antibiotic prophylaxis against endocarditis before dental treatment and other procedures.

If thrombosis is detected, the first goal is to optimize the anticoagulation therapy. Surgery or thrombolysis may be required for larger thromboses.

GENERAL INTERNISTS will be more likely to take a leading role in the care of patients with prosthetic valves as the population ages and the use of replacement valves becomes more common. Since the first prosthetic valve 40 years ago, the number of prosthetic valves implanted has risen steadily to its current figure of 60,000 per year.¹

Patients with prosthetic valves require antithrombotic therapy and endocarditis prophylaxis. Their routine care should include regular physical examinations and echocardiograms to screen for complications such as valve structural failure, thrombosis, embolism, endocarditis, paravalvular leak, and hemolytic anemia. Some complications can be treated medically, whereas others require a referral for surgery.

In this review, we discuss screening, monitoring, routine medical care, and the diagnosis and treatment of complications in patients with different types of prosthetic heart valves.

TYPES OF PROSTHETIC VALVES

The 80-plus types of prosthetic heart valves can be divided into two categories: mechanical and bioprosthetic (Table 1).

Mechanical valves. Three types of mechanical valves are currently in use: bileaflet tilting disk, single tilting disk, and ball-in-cage.

Bioprosthetic valves, also known as tissue valves, can be categorized as heterografts, homografts, or autografts. Heterograft valves (also called xenografts) are either whole porcine aortic valves or hand-fabricated valves made from bovine pericardial tissue. Homograft valves are human aortic valves harvested from cadavers and cryogenically preserved. Autografts are used solely in the Ross
procedure, in which the native pulmonary valve is replaced with a homograft. The native pulmonary valve is then used to replace the aortic valve.2

ROUTINE CARE FOR PATIENTS WITH PROSTHETIC VALVES

The routine care of patients with prosthetic valves should include annual physical examinations and echocardiograms, anticoagulation therapy, and prophylaxis against endocarditis.

Many of the care decisions are made on the basis of the valve type and location; thus, it is important for the physician to know the type, model, size, and year of the prosthetic valve. Every patient should carry a wallet card with this information. If this information is not available, an expert may be able to use chest radiography to identify mechanical valves (Figure 1), although x-ray images may not be helpful for identifying stentless tissue valves.

The importance of auscultation

Each valve type and position has a unique set of normal sounds (Table 2). Murmurs are common, and many are normal. However, a new or changing murmur may indicate a problem.

Sounds from mechanical valves

With mechanical valves, mechanical clicks should be heard as the valve opens and closes. With the bileaflet tilting disk valves, the opening click should be softer than the closing click; if the closing click is softer, then the valve may be malfunctioning. With a valve in the aortic position, there is a soft midsystolic ejection murmur that radiates to the carotid arteries. Any diastolic murmur is abnormal and should raise suspicion of aortic insufficiency. If the valve is in the mitral position, the opening click follows the second heart sound in diastole, and there is a low-frequency diastolic rumble. A holosystolic murmur should raise the suspicion of mitral regurgitation.

With the single tilting disk valves, sounds are similar to those from bileaflet tilting disk valves, with one notable difference: a single tilting disk valve in the aortic position may create a short, soft diastolic murmur.

The ball-in-cage valve typically causes a loud opening click, followed by several clicks of different intensities caused by the ball bouncing in the cage. The closing click should be less intense than the opening one; if it is not, valve dysfunction is a possibility. A systolic flow murmur is often heard from ball-in-cage valves in the aortic position. A ny diastolic murmur is abnormal and suggests aortic insufficiency.

When a ball-in-cage valve is in the mitral position, turbulence in the left ventricular outflow tract may cause a systolic ejection...
murmur. A holosystolic murmur is abnormal and should raise concern about mitral regurgitation. A prolonged diastolic rumble is also abnormal and suggests prosthetic stenosis, a high flow state, or a small prosthesis.

Sounds from bioprosthetic valves. Because bioprosthetic valves are made from tissue, they do not click, and their opening and closing sounds are similar to those of native heart valves.

Stented valves, ie, those with a rigid or semirigid support frame, sound somewhat different from unstented ones. Stented heterograft valves in the aortic position produce a systolic ejection murmur that can radiate to the carotid arteries. Stented bioprosthetic valves in the mitral position may cause an early-to-mid systolic ejection murmur attributable to the turbulent flow in the left ventricular outflow tract; the ejection murmur is followed by the second heart sound and then by an opening sound of the valve. A low-frequency diastolic rumble may also be heard at the apex.

Stentless heterograft valves and homograft valves usually sound similar to native valves, although homograft valves with small effective orifices may create systolic ejection murmurs.

Appropriate use of screening Doppler echocardiography
Doppler echocardiography should be used for serial evaluations of left ventricular function, valve structure, valvular stenosis or regurgitation, and pulmonary artery pressures. Patients should have a baseline echocardiogram within 2 to 3 months after surgery for prosthetic...
The guidelines from the American College of Cardiology (ACC) and the American Heart Association (AHA) recommend repeating the echocardiogram annually in patients without symptoms, but some experts suggest less frequent follow-up exams. The pressure gradient across the valve is measured to screen for valvular stenosis (Table 3). The normal gradient for each valve depends upon the ring size, the cardiac output, and the heart rate of the patient. High gradients may be normal in patients with high-output states, such as anemia, hyperthyroidism, pregnancy, sepsis, and tachycardia. However,
in patients with a normal cardiac output, high gradients may indicate valvular stenosis. In patients with decreased cardiac output due to left ventricular dysfunction, a high-normal gradient may signify severe stenosis.

It is also normal for prosthetic mechanical valves to have a slight amount of regurgitation, or backflow, caused by blood leaking between and around the valve assembly. The jets of this normal backflow have low velocities. In contrast, abnormal regurgitant flows have high velocities. In normally functioning bioprosthetic valves, backflow is less common, occurring in fewer than 10% of patients.3

Initiation and maintenance of proper anticoagulation
Different types of valves carry different risks of thrombosis, and valves are more thrombogenic in the mitral position than in the aortic. Thus, the level of anticoagulation is adjusted according to the type of valve and the valve position (Table 4).

Mechanical valves. Patients with mechanical valves are routinely treated with anticoagulants because without this therapy, they have a lifetime risk of thromboembolism that may be as high as 34%.4–7 Ideally, anticoagulation therapy with warfarin would be started immediately after surgical implantation, but to prevent surgical bleeding, it is usually started a few days after surgery.

Patients with other risk factors for thromboembolism, such as left atrial thrombus, atrial fibrillation, decreased left ventricular function, multiple prosthetic valves, or any previous thromboembolic event, may be given aspirin in addition to warfarin.

For heterograft bioprosthetic valves, the need for warfarin is controversial. For mitral valves, an international normalized ratio (INR) level of 2.5 to 3.5 is often recommended for the first 3 months after surgery until the
valve is fully endothelialized. If the patient has additional risk factors (such as left atrial thrombus, atrial fibrillation, or a prior thromboembolic event), then anticoagulation should be continued beyond the first 3 months. For aortic valves, aspirin 325 mg daily is usually recommended for 6 to 12 weeks until the valve is endothelialized, though some guidelines recommend warfarin instead.

For homograft bioprosthetic valves, no anticoagulation is necessary. However, as with any patient, anticoagulation therapy is required if there is atrial fibrillation, atrial thrombus, or previous thromboembolic events.

Preventing endocarditis
Patients with prosthetic valves of any type have a 2% to 6% lifetime risk of developing endocarditis, which carries a high risk of mortality.8,9 There are no data to suggest that prophylactic antibiotics reduce the risk. Nevertheless, the ACC/AHA guidelines do recommend prophylactic antibiotics for heart valve patients in certain high-risk situations: dental procedures and tooth cleaning, surgery involving the respiratory mucosa, some respiratory procedures, and some gastrointestinal and genitourinary procedures.10

COMMONLY ENCOUNTERED CLINICAL SCENARIOS

Anticoagulation and invasive procedures
Anticoagulation therapy can be continued when the patient undergoes a minor procedure associated with little or no blood loss, such as dental cleaning, dental caries treatment, or minor skin surgery.

However, warfarin should be stopped 3 to 5 days before any major procedure expected to entail substantial blood loss. Patients at the highest risk (those with combinations of risk factors such as a mitral prosthesis, atrial fibrillation, and severe left ventricular dysfunction) should be admitted to the hospital for intravenous heparin at therapeutic levels. The heparin should be stopped 2 to 4 hours before the procedure and then restarted afterwards, followed by oral warfarin.

TABLE 4

<table>
<thead>
<tr>
<th>PROsthesis SITE</th>
<th>TARGET INTERNATIONAL NORMALIZED RATIO (INR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PATIENTs WITH NO OTHER RISK FACTORS</td>
</tr>
<tr>
<td>Mitral</td>
<td></td>
</tr>
<tr>
<td>Single tilting disk</td>
<td>3.5</td>
</tr>
<tr>
<td>Other mechanical valves</td>
<td>2.5–3.5</td>
</tr>
<tr>
<td>Bioprosthetic valves</td>
<td>2.5–3.5 for first 3 months, then aspirin 81 mg daily</td>
</tr>
<tr>
<td>Aortic</td>
<td></td>
</tr>
<tr>
<td>Bileaflet</td>
<td>2.0–3.0</td>
</tr>
<tr>
<td>Medtronic-Hall</td>
<td>2.0–3.0</td>
</tr>
<tr>
<td>Other disk valves</td>
<td>2.5–3.5</td>
</tr>
<tr>
<td>Starr-Edwards</td>
<td>2.5–3.5</td>
</tr>
<tr>
<td>Bioprosthetic</td>
<td>Aspirin 325 mg daily for first 3 months</td>
</tr>
</tbody>
</table>

*Additional risk factors for thromboembolism include atrial fibrillation, decreased left ventricular systolic function, left atrial thrombus, multiple prosthetic valves, and any history of thromboembolic events.
For a patient at an intermediate level of risk, such as one with a bileaflet disk aortic valve with atrial fibrillation, low-molecular-weight heparin may be considered for use in the outpatient setting. However, the efficacy of low-molecular-weight heparin as a bridge therapy for patients with prosthetic valves has not been studied in a randomized trial.11,12

Anticoagulation during pregnancy in patients with mechanical valves

Pregnancy creates a hypercoagulable state, and even with anticoagulation therapy, thromboembolic events may occur in 3% to 14% of pregnant women with mechanical prosthetic valves.13–16 There is as yet no consensus about anticoagulation therapy for these patients.

Unfortunately, warfarin crosses the placenta and poses a risk to the fetus. It is associated with stillbirths, prematurity, spontaneous abortions, fetal deformity (embryopathy), and neurological abnormalities. The risk of fetal deformity is highest (4% to 10%) when the exposure is during the 6th through 12th weeks of gestation. Furthermore, warfarin may be associated with fetal cerebral hemorrhage during labor and delivery.

Some experts recommend using subcutaneous heparin, which does not cross the placenta, at a dose of 17,500 to 20,000 units twice a day, adjusted to a partial thromboplastin time (PTT) that is 2 to 3 times the control. However, several case series have shown that heparin is associated with an unacceptable risk of thromboembolism.17–19 Thus, subcutaneous heparin should be considered only for low-risk patients, that is, those with no history of thromboembolism and with newer models of prosthetic valves.

For pregnant women with additional risk factors for thromboembolism (such as a previous thromboembolic event or a ball-in-cage valve in the mitral position), intravenous heparin should be used for the first trimester, with a PTT goal of 2 to 3 times the control. Warfarin can then be used through week 35, when anticoagulation should be converted back to intravenous heparin in anticipation of delivery. Heparin and warfarin can be restarted 4 to 6 hours after delivery in patients who have not had substantial bleeding. Studies are ongoing about the efficacy of low-molecular-weight heparin in these patients.20

Intracerebral hemorrhage during anticoagulation

A dilemma occurs when a patient receiving anticoagulation therapy for a mechanical prosthetic valve develops intracerebral bleeding. Several studies have shown that a strategy of withholding anticoagulation for 1 to 2 weeks, followed by reinstitution of anticoagulation, is effective in this situation.21–23

Managing excessive anticoagulation

When the INR rises above 5, the risk of hemorrhage rises. In most patients, supratherapeutic INR levels should be managed simply by withholding the warfarin and following serial INR levels or by giving a small dose (1 mg) of oral vitamin K.24 However, a sudden decrease in INR to subtherapeutic levels increases the risk of thromboembolism. If the patient has significant bleeding in the presence of excessive anticoagulation or needs emergency surgery, fresh frozen plasma should be used to help correct an excessive anticoagulation level. Vitamin K may also be used as adjunctive therapy in these situations, although it may make it more difficult to achieve therapeutic INR levels the next time warfarin is given.

No problem with MRI or metal detectors

It is safe for patients with any type of prosthetic valve to undergo magnetic resonance imaging. In addition, patients can pass through metal detectors without triggering the detector.

Strut fractures in the Björk-Shiley valve

The Björk-Shiley convexo-concave valve was withdrawn from the market in 1986 because of a 0.5% to 2% risk per patient-year of strut fracture. This structural problem leads to disk embolization, acute valvular regurgitation, and death.

Patients at highest risk for Björk-Shiley strut fracture are those who were younger than 50 years old at implantation and whose valves have an opening angle of 70° and a diameter of more than 29 mm. These patients should undergo valve replacement.25–27

Strut fractures may present as sudden syn-
cope, dyspnea, or cardiogenic shock. Patients with suspected strut fractures require an emergency cardiology consultation because the complication can be fatal within minutes.

POTENTIAL COMPLICATIONS OF PROSTHETIC VALVES

Complications are rare, but when they do occur, they can cause valve dysfunction. Complications include structural deterioration, paravalvular regurgitation, patient-prosthetic mismatch, thrombosis, embolism, endocarditis, and hemolytic anemia.

When prosthetic valve dysfunction is suspected, a careful history and physical examination is vital. Transthoracic echocardiography should then be performed to evaluate the valve structure, assess the transvalvular gradients for possible stenosis, identify regurgitation, and visualize any thrombi or vegetations.

If transthoracic echocardiography is inadequate, then transesophageal echocardiography will provide better visualization. Transesophageal echocardiography is often considered the imaging method of choice in evaluating prosthetic valve dysfunction. Unfortunately, it may still be insufficient for aortic valves. In these instances, cinefluoroscopy may aid in visualizing the function of the valve and seeing if the valve leaflets are mobile (FIGURE 2).

Rarely, cardiac catheterization may be warranted to further assess hemodynamics. If these studies are unrevealing and a patient has exertional symptoms, then stress echocardiography should be performed to evaluate the valve hemodynamics at higher cardiac outputs (FIGURE 3).

Structural deterioration

Valve dysfunction can be caused by structural problems including valve wear, leaflet tear, fracture, calcification, and suture line disruption. These problems usually present as valvular stenosis or regurgitation.

Structural problems are much less common in most mechanical valves than in bioprosthetic valves. About 30% of heterograft valves and 10% to 20% of homograft valves require replacement within 10 to 15 years because of structural failure. After 10 years, the rate of deterioration rapidly accelerates.

A primary mechanism of failure is deposition of calcium, which can restrict leaflet motion and produce leaflet tears. These problems are manifested by valvular stenosis and regurgitation. Calcium deposition is particularly common in stented heterograft valves.
Algorithm for evaluating patients with suspected prosthetic valve dysfunction

1. Careful history and physical exam ± laboratory testing (lactate dehydrogenase, total bilirubin, hemoglobin, reticulocyte count, erythrocyte sedimentation rate, blood cultures)
2. Transthoracic echocardiography with Doppler
 - Inadequate or non-diagnostic study
 - Is thrombosis or obstruction suspected?
 - Yes
 - No diagnosis
 - No
 - Transesophageal echocardiography
 - No diagnosis
 - Consider stress echocardiography, cardiac catheterization
 - No diagnosis
3. Cinefluoroscopy
4. Diagnosis of abnormal prosthetic function
5. Medical or surgical therapy

Valves 6 to 8 years after implantation. Calcific degeneration occurs more quickly in patients under 20 years old and in patients with abnormal calcium metabolism (caused by chronic renal failure, hyperparathyroidism, Paget disease of bone, and other causes of hypercalcemia).32

Pregnancy also increases calcium turnover and thus accelerates the process of premature valve failure.33 In addition, the failure rate is higher in patients who have mitral valve prostheses.31,34-36 For these reasons, bioprosthetic valves are usually used in patients over 65 years old. In patients over 70, only 10% have had to have reoperation for valve replacement at 12 to 15 years.36,37
Paravalvular leak
Paravalvular regurgitation is uncommon and is usually due to endocarditis. However, it can occur soon after implantation if the valve is positioned poorly. Progressively increasing leakage (identified during the physical exam and Doppler echocardiography) is an indication for reoperation. Occasionally, suture or patch repair is feasible; if not, the valve must be replaced.

Patient-prosthetic mismatch
Valve dysfunction can also result from inappropriate sizing of the valve. The mismatch is usually due to the valve area being relatively small for the patient's size (effective orifice area ≤ 0.85 cm²/m²) and is usually seen in patients who underwent aortic valve replacement for aortic stenosis.38

Patients with mismatched valves generally do not improve clinically after valve implantation and may even worsen.39 Echocardiography shows a structurally normal prosthesis, but one with a higher-than-expected gradient.38 Intrinsic valve dysfunction must be excluded before mismatch is diagnosed. Stress echocardiography may be useful in identifying a large increase in transvalvular gradient with exercise, which, if the valve is structurally normal, suggests that the valve may be too small for the patient.

The problem may be corrected by replacing the valve with a larger one or one of a different type, and enlarging the annulus.

Valvular thrombosis
Thrombosis is a risk with all prosthetic valves. Thromboses can develop gradually or abruptly. With disk valves, thrombosis usually occurs suddenly and can be fatal; with ball-in-cage valves, thrombosis often develops over several weeks and manifests as heart failure, decreased perfusion, or embolization.

Mechanical valves are more likely to trigger thrombosis than are tissue valves. The risk is highest for ball-in-cage valves, followed by single tilting disk prostheses and then bileaflet tilting disk prostheses. However, when anticoagulation therapy is adequate, all mechanical and bioprosthetic valves have similar thrombotic complication rates, approximately 0.1% to 5.7% per patient-year.28,40-44

The risk of thrombosis also depends on the valve location. The risk of thrombosis is higher for right-sided prostheses than for left-sided ones, and may be as high as 5% per patient-year.45 Of the left-sided valves, those in the mitral position are more prone to thrombosis than those in the aortic position.

Treating valvular thrombosis
When thrombosis is detected, the first goal should be to optimize the anticoagulation therapy. Patients not already taking anticoagulants should be started, and patients whose level of anticoagulation is subtherapeutic should receive higher doses. If the thrombus is less than 5 mm in diameter (as measured by echocardiography) and is not obstructing the valve, then anticoagulation therapy is sufficient.

Surgery or thrombolysis is required for larger thrombi. Valve replacement surgery for valve thrombosis is associated with a mortality rate of approximately 9%, but the rate can be as high as 67% in an emergency situation.46-49 Factors associated with higher mortality rates include higher preoperative New York Heart Association functional class, worse left ventricular systolic function, more urgent surgery, and worse coronary artery disease status.47,48

In patients with high surgical risk or with any contraindication to surgery, thrombolytic therapy should be considered. Thrombolysis has a success rate of 70% to 80%, a stroke risk of 3% to 10%, and a mortality rate of 6% to 10% when used for left-sided valves.14,44,50,51 In general, the mortality rate is lower when thrombolysis is used to treat right-sided thromboses, and thus thrombolysis is often used for such cases. It is also more effective for thromboses affecting the aortic valve than for thromboses affecting the mitral valve. Thrombolysis also works better if the symptoms have been present for less than 2 weeks.

After valve thrombosis is detected, the target INR should be 3.0 to 4.0 for aortic valves and 3.5 to 4.5 for mitral valves. If the thrombosis occurred while anticoagulation levels were therapeutic, then the addition of aspirin may also be considered.

Embolism
One of the most feared complications of thrombosis is a cerebral or peripheral embolic event.
Embolic events occur more often in patients with mechanical valves than in those with bioprosthetic valves, though the rates become similar with adequate anticoagulation therapy. In patients with mechanical valves without any antithrombotic therapy, the risk for embolization is approximately 4% per patient-year; with antiplatelet therapy, the risk decreases to 2.2% per patient-year; and with warfarin, the risk further decreases to 1% per patient-year. In patients with bioprosthetic valves, the risk of embolism is approximately 0.7% per year.

Factors that increase the risk of systemic embolization include age over 70 years, atrial fibrillation, mitral valve position, and, perhaps, decreased systolic function. The risk of embolization is highest in the first few months after valve insertion before the valve is fully endothelialized.

For peripheral embolism, anticoagulation therapy should be started or intensified. However, in cases of cerebral embolism, intracerebral hemorrhage and extensive cerebral infarction must be excluded before anticoagulation therapy is started. Even when hemorrhage is ruled out, anticoagulants should not be started until 3 days after the event to ensure that there is no hemorrhagic conversion from the infarct.

Endocarditis
Endocarditis carries a high mortality rate in prosthetic valve patients and must be quickly diagnosed and treated. However, its diagnosis can be difficult. Endocarditis should be suspected in any patient with a prosthetic valve who develops a new or changing murmur or who has a fever, but the diagnosis should be confirmed by the Duke criteria.

Early endocarditis. Early prosthetic valve endocarditis, i.e., infection developing within 2 months of implantation, has a worse prognosis than an infection that occurs later. Early prosthetic valve endocarditis carries a mortality rate between 20% and 80%. It is usually caused by skin contamination and is often associated with ring abscesses, conduction disturbances, and paravalvular leaks. The most common causative organisms are coagulase-negative Staphylococcus, Staphylococcus aureus, gram-negative bacteria, diphtheroids, and fungi.

A patient with early prosthetic valve endocarditis may not have the typical symptoms of endocarditis. Fever, diaphoresis, and back pain are the most common symptoms, and the physical exam may reveal a murmur and signs of heart failure. Peripheral findings, such as splinter hemorrhages, Osler nodes, or Janeway lesions, are found in only 10% of these patients.

About 74% of patients are anemic, although recent surgery is a contributing factor. The erythrocyte sedimentation rate is not usually elevated.

Late endocarditis. The signs, symptoms, and prognosis of late prosthetic valve endocarditis (i.e., developing more than 2 months after implantation) are similar to those of native valve endocarditis. Mortality may be as high as 46%.

Late prosthetic valve endocarditis is usually caused by infections or procedures involving the mouth, urinary system, gastrointestinal tract, or skin. Causative organisms include streptococci, coagulase-negative Staphylococcus, and the HACEK organisms (H. aemophilus parainfluenzae, H. aphrophilus, A. citobacillus, C. cardio bacterium, Eikenella, and K. kingella).

Almost 30% of patients with late prosthetic valve endocarditis may have cerebrovascular embolization in addition to the regular signs of endocarditis. Hemolytic anemia and heart block are also more common than in native endocarditis.

Treating prosthetic valve endocarditis. For any patient with suspected endocarditis, at least three sets of blood cultures should be obtained serially over a period of hours. These cultures should be saved for at least 3 weeks in an attempt to grow any fastidious organisms. In addition, special culture media may be required to grow some organisms such as Rickettsiae, Legionella, and M. mycobacteria.

Empiric antibiotic therapy should be started only after blood cultures have been obtained. Once an organism is identified, antibiotic therapy should be tailored to that organism and should be continued for at least 6 weeks.

Echocardiography should be performed to look for vegetations and abscesses and to eval-
Hemolytic anemia
Severe hemolytic anemia is uncommon but may occur when red blood cells are sheared by turbulent blood flow within the prosthetic valve apparatus. Hemolytic anemia often suggests infection or endocarditis that has led to dehiscence of the valve and subsequent paravalvular regurgitation. Hemolytic anemia is more common in patients with ball-in-cage valves and in patients with multiple prosthetic valves.

When hemolytic anemia is suspected, the clinician should examine and follow the levels of lactate dehydrogenase, haptoglobin, and bilirubin, and the reticulocyte count.

Patients with hemolytic anemia should be given iron and folate supplementation, possibly with blood transfusions as well. Beta-blockers decrease the heart rate and heart contractility, which may also decrease the amount of hemolysis. Valve replacement should be considered when severe hemolytic anemia does not respond to medical therapy.

CONCLUSION
As the prevalence of patients with prosthetic valves rises, the primary care physician is becoming increasingly responsible for caring for these patients. In general, management is straightforward and consists primarily of routine history and physical examinations, annual echocardiograms, maintaining adequate anticoagulation therapy, and ensuring appropriate antibiotic prophylaxis for endocarditis. However, there are several potential devastating complications that can occur in these patients. Recognizing these complications early is imperative to prevent serious morbidity and mortality. It is hoped that attention to these issues will lead to optimal care for patients with prosthetic valves.

Acknowledgment: We gratefully acknowledge Dr. Umesh N. Khot for his review and thoughtful comments on this manuscript.

ADDRESS: Craig R. Asher, MD, Department of Cardiology, F15, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail: asherc@ccf.org.