Recent advances in preventing and managing acute vertebral compression fractures offer clinicians an opportunity to reduce its devastating impact, even in the face of an expanding aging population.

Although management generally consists of analgesics, bracing, physical therapy, and treatment of the underlying cause of the fracture, two new minimally invasive surgical procedures may provide immediate pain relief and improve fracture-related spinal deformity.

Clinical Presentation

Vertebral compression fractures are common and serious. Each year, about 700,000 occur in the United States, with a prevalence of up to 25% in women over the age of 50.1-4 Although only about a third are acutely symptomatic, nearly all are associated with a significant increase in mortality and functional and psychological impairment.5

Magnetic resonance imaging can help determine whether a compression fracture is old or recent, and whether it is due to osteoporosis or malignancy.

Bracing is commonly used in the nonsurgical management of acute fractures. Spinal orthoses help control pain and promote healing by stabilizing the spine.

Two new minimally invasive surgical procedures may provide immediate pain relief and improve fracture-related spinal deformity. Further study is needed to define the indications for these procedures and to determine their long-term safety.
CAUSES OF VERTEBRAL COMPRESSION FRACTURES

Trauma is the most common cause in patients under age 50, and because of this, fractures are actually more prevalent in men than in women up until age 60.

Postmenopausal osteoporosis is the most common cause after age 60.

Malignancy. Advancing age also increases the risk of pathologic fracture due to malignancy, and multiple myeloma, avascular necrosis, lymphoma, or other metastatic malignancies or infection must always be considered. Vertebral compression fractures occur in 55% to 70% of patients with multiple myeloma and is the initial clinical sign in 34% to 64% of these patients.

Secondary osteoporosis. Some patients are found to have bone density measurements well below age-expected values. In these cases, a secondary cause of bone loss should be considered, such as exogenous glucocorticosteroid therapy, excessive alcohol intake, hypogonadism, and endocrinopathies such as hyperthyroidism, Cushing disease, hyperparathyroidism, and diabetes mellitus.

CONSEQUENCES OF VERTEBRAL COMPRESSION FRACTURES

Whether compression fractures are acutely symptomatic or not, their long-term sequelae are significant. They can be categorized as biomechanical, functional, or psychosocial, although they are interdependent. Ultimately, compression fracture is associated with a significant decrease in survival.

Biomechanical consequences

Persistent back pain is due to mechanical factors and to muscle fatigue due to progressive spinal kyphosis.
Abdominal symptoms. Progressive kyphosis, particularly with multiple compression fractures, shortens the thoracic spine and compresses the abdominal contents, which can lead to gastrointestinal symptoms such as early satiety and abdominal bloating. In some patients with significant thoracolumbar shortening, the lower ribs rest on the pelvic brim, producing lower abdominal discomfort. These abdominal symptoms may result in anorexia and subsequent weight loss, a particular concern in elderly patients who are already frail.2

Pulmonary compromise due to vertebral compression fracture and kyphosis typically consists of restrictive lung disease with reduced vital capacity. On the average, each fracture reduces vital capacity by 9%.19,20

Increased fracture risk. As kyphosis develops, more force is transmitted to adjacent, already osteoporotic vertebrae, increasing the risk of additional fractures.21 The presence of one or more vertebral compression fractures increases the risk of an additional fracture fivefold during the following year.2,22

Functional consequences

Patients with compression fractures have lower levels of functional performance compared with controls,2,23 need more assistance, experience more pain with activity, and have more difficulty with activities of daily living. A recent study24,25 found that these patients...
had lower scores on a health-related quality of life index with respect to physical function, emotional status, clinical symptoms, and overall functional performance.24,25 A fracture in the lumbar spine was most predictive of poor functional status.

Furthermore, many patients with multiple vertebral compression fractures become progressively inactive and sedentary, for a number of reasons, such as relief of mechanical pain in the supine position, fear of falling and additional fractures, and restrictive pulmonary disease. Inactivity, in turn, promotes deconditioning, progressive deterioration in the ability to perform activities of daily living, and further bone loss.26

Pain and inactivity may disturb sleep patterns, promoting development of fibromyalgia-like myofascial pain.

Psychological consequences

Depression develops in up to 40% of patients with compression fractures, due to chronic pain, changes in body image, deterioration in the ability to perform self-care, and prolonged bed rest. Patients more likely to develop depression have more than one fracture and tend to be older and more socially isolated.24

Decreased survival

In a recent prospective cohort study of almost 10,000 women age 65 or older,24,27 those with a compression fracture had a 23% higher rate of age-adjusted mortality. The rate was strikingly higher in women who had five or more of these fractures.

Vertebral compression fracture was related to an increased risk of pulmonary death, particularly in the presence of severe kyphosis. For unclear reasons, it was also associated with an increased risk of cancer death.27

IS TRAUMA THE CAUSE?

In general, once a vertebral compression fracture is observed on a plain film, the next step depends on whether the fracture is related to trauma (Figure 2). If trauma is the cause and the patient is stable, conservative management with analgesics, supportive care, and monitoring is appropriate. If the patient is not stable (eg, has a neurologic deficit on clinical examination or radiologic evidence of spinal fracture involving two columns), then surgery should be considered.

If no history of trauma is evident, magnetic resonance imaging (MRI) may identify malignancy or infection as the cause, in which case blood work, cultures, and bone biopsy may be in order. If MRI is normal, a workup for osteoporosis is recommended, with a focus on secondary osteoporosis in younger patients and primary osteoporosis in older patients.
IS THE FRACTURE OLD OR RECENT?

Although compression fractures are typically discovered on plain anteroposterior and lateral radiographs, these films do not provide information about the age of the fracture.

MRI (Figure 3) can help determine whether the fracture is old or recent, and whether it is due to osteoporosis or to malignancy, both of which may affect decision-making regarding treatment.

When evaluating the age of a compression fracture, T2 sagittal short inversion-time inversion-recovery (STIR) sequence MRI may be the most sensitive for assessing water content.28 Acute fracture is identified by “bone edema.”

Bone scanning, especially single-photon emission computed tomography (SPECT) limited to the spine, may also help determine the acuity of the fracture.29 In a retrospective study, Maynard et al30 found that increased activity on a bone scan strongly predicted a positive clinical response (ie, relief of pain) to percutaneous vertebroplasty in osteoporotic vertebral compression fractures.30

OSTEOPOROSIS OR MALIGNANCY?

MRI also helps identify pathologic causes of vertebral compression fractures, such as malignancy.17,31,32

Baur et al31 showed that in diffusion-weighted MRI scans, benign compression fractures have a negative bone marrow contrast ratio, whereas pathologic fractures have a positive ratio.

In another study, Rupp et al32 concluded that signal changes on T1-weighted and T2-weighted MRI scans are not sufficiently specific to distinguish osteopenia from collapse due to metastasis, whereas pedicle involvement or an accompanying soft tissue mass was specific for a tumor-related vertebral fracture or lesion.32

In patients with multiple myeloma, the MRI scan may appear benign (band-like areas of low signal intensity underlying the fractured endplates), as in osteoporotic compression fractures.33 Therefore, an apparently normal MRI scan does not rule out multiple myeloma.16,33

MANAGEMENT PRINCIPLES

Management may require addressing one or all of the following:

- Acute fracture pain
- Chronic mechanical sequelae
- Prevention of additional compression fractures, including assessing and treating underlying osteoporosis.34

MANAGEMENT OF ACUTE FRACTURE PAIN

If the patient is neurologically stable, medical treatment of an acute fracture should emphasize pain relief, with limited bed rest, appropriate analgesics, bracing, and physical strengthening.18,34

Avoid prolonged bed rest

The hazards of prolonged bed rest in the elderly include deconditioning, accelerated bone loss, deep venous thrombosis, pneumonia, decubitus ulcers, disorientation, and depression.

Analgesics

Analgesics, in addition to relieving pain, may permit earlier ambulation and avoidance of the complications of prolonged bed rest.2,24,26

Calcitonin, given subcutaneously, intranasally, or rectally, has an analgesic effect in compression fractures due to osteoporosis35–40 and in patients with metastatic bone pain.41–45

The analgesic activity of calcitonin may be related to increased levels of plasma endorphins.44,46 Recently, Yoshimura47 and Lyritis and Trovas48 demonstrated that calcitonin may exert its action via serotonergic receptors in the spinal cord.

In osteoporotic vertebral compression fractures, calcitonin also inhibits osteoclast function, thereby preventing bone resorption.49,50

Opioid analgesics may be necessary in some patients to relieve pain adequately. However, in older, immobilized patients, opioid-associated constipation and cognitive impairment are significant concerns,18,34 and a prophylactic laxative program should be started at the same time the opioid is prescribed.
When prescribing an opioid, caution the spouse or caregiver to observe the patient carefully for cognitive impairment and to provide a protected environment to reduce the risk of falling.

Avoid nonsteroidal anti-inflammatory drugs (NSAIDs). In general, pure analgesics, opioid or non-opioid, are preferable to NSAIDs, particularly in older patients with vertebral compression fracture. The risk of NSAID-related gastropathy, renal insufficiency, and congestive heart failure is significantly increased in the elderly.18,51–55

Bracing

Bracing is commonly used in acute nonsurgical management. Spinal orthoses help control pain and promote healing by stabilizing the spine. By restraining forward flexion, they reduce the load on the anterior column and the vertebral body.

Definitive studies comparing different types of orthoses are lacking, but in general, all spine orthoses, whether made of cloth, metal, or plastic, or whether rigid or flexible, use a three-point pressure system. If possible, the orthosis should be lightweight and easy for the patient to use.

For lower thoracic and lumbar fractures, a Jewett hyperextension orthosis or cruciform anterior spinal hyperextension (CASH) orthosis is typically used.

The optimal duration of bracing is not well studied. Two to 3 months is adequate for most patients. Excessively prolonged bracing may lead to weakening of trunk muscles, skin breakdown, increased segmental motion at the upper and lower end of the orthosis, and diminished pulmonary capacity.56–58

Strengthening program

As the acute fracture pain subsides, a walking program can begin, with gentle strengthening exercises focusing on spinal extensor muscles.45 In some patients, a home physical therapist can encourage and assist with early ambulation and mobilization.

A carefully supervised rehabilitation program should be started after 3 to 4 months to more aggressively strengthen the spinal extensor and abdominal muscles.34,59

VERTEBROPLASTY AND KYPHOPLASTY

Two new, minimally invasive surgical techniques are used to treat vertebral compression fractures: percutaneous vertebroplasty and kyphoplasty.

Percutaneous vertebroplasty

Percutaneous vertebroplasty60 involves placing a bone marrow biopsy needle into the compressed vertebra via a posterior approach, guided by fluoroscopy or computed tomography. Methylmethacrylate cement is then injected.

The procedure stabilizes the fracture, and it provides nearly immediate pain relief in 90% to 100% of patients. It does not, however, improve the deformity.61–64

Complications occur in fewer than 10% of patients and include radiculopathy, infection, and cord compression. Since the cement is injected under relatively high pressure, leakage outside of the vertebrae is relatively common, occurring in 50% to 67% of patients.61,63,65–67 Leakage of methylmethacrylate cement into the epidural space may cause neurologic deficit. Other complications include cement leakage from a vertebra to the paravertebral muscles (ie, psoas muscle), causing severe pain due to a localized thermal reaction. In addition, leakage of cement into the venous circulation can produce a generalized toxic reaction. If the cement enters the inferior vena cava, pulmonary embolism can develop.63–65 However, these complications can be minimized by the use of venography prior to the injection of cement and by using a smaller dose of cement.68

Kyphoplasty

Kyphoplasty was introduced in 1998 for treatment of compression fracture. This procedure involves percutaneous insertion of a needle with an inflatable bone tamp into the fractured vertebra (FIGURE 4). Inflation of the bone tamp creates a cavity and re-expands the compressed vertebra. The cavity is then filled with a thick methylmethacrylate mixture under low pressure.

Early experience suggests that more than 90% of patients experience pain relief and prompt functional improvement with this procedure, similar to the results with percutaneous
Kyphoplasty

In kyphoplasty, a cannula is placed into the collapsed vertebra (a), through which an inflatable bone tamp is inserted into the vertebral body. The bone tamp is inflated (b) and the cavity is filled with an appropriate biomaterial (c). The hardened material forms an internal cast that stabilizes the fracture (d).
Vertebroplasty and kyphoplasty can relieve severe pain promptly. In addition, kyphoplasty restores vertebral height by almost 50% in approximately 70% of patients. In the other 30% of patients, however, typically those with older fractures, height restoration is not possible.

Complications are uncommon, and cement leakage is less frequent than with vertebroplasty.61,67,69,70

Long-term effectiveness
We do not know yet whether kyphoplasty reduces the frequency of serious sequelae of vertebral compression fracture, nor do we know the long-term consequences of cement in a vertebral body. In addition, the specific indications for kyphoplasty vs vertebroplasty in patients with acute fracture are yet to be determined.

But this much is certain: both vertebroplasty and kyphoplasty can provide prompt relief of incapacitating pain due to vertebral compression fracture, and kyphoplasty may provide the additional significant benefit of restoring vertebral body height, thus avoiding the progressive kyphosis seen with osteoporotic compression fracture. Clearly, patients with acute compression fracture and incapacitating pain that does not respond to good medical treatment should be considered for one of these procedures. If restoration of vertebral body height is an objective, earlier intervention with kyphoplasty seems more likely to be successful.

LONG-TERM MANAGEMENT

Chronic pain
Some patients experience complete resolution of acute fracture symptoms within 8 to 12 weeks. Others, however, continue to experience mechanical or myofascial back pain, particularly with prolonged standing or walking. Chronic pain is generally more common in patients with multiple fractures, loss of height, and low bone density. In these patients, it is paramount to continue an active extensor muscle strengthening and stretching program, as well as a low-impact aerobic conditioning program such as walking or swimming.

In addition to analgesics, nonpharmacologic measures such as transcutaneous electrical nerve stimulation, heat or cold applications, or intermittent bracing may provide temporary relief. The psychological aspects of chronic pain and functional loss should be addressed with counseling and, if indicated, antidepressants.2,23,34

Fracture prevention
Evaluation and management of osteoporosis is an integral part of the management of vertebral compression fracture. Most patients with an acute osteoporotic fracture should be considered for aggressive osteoporosis therapy.18,72

Bone densitometry should be performed in patients presenting with compression fractures and previously unsuspected bone loss.72–75 The National Osteoporosis Foundation recommends that all women with a spinal fracture and a bone mineral density T score less than –1.5 should be treated for osteoporosis.76

Dietary calcium and vitamin D supplementation should be optimized.

Bisphosphonates (alendronate, risedronate) reduce the incidence of new vertebral fractures by almost 50%,77–80 and significantly reduce the risk of hip fracture as well.77 Raloxifene, a selective estrogen receptor modulator, has been shown to reduce new vertebral fractures by about 68% at 1 year and by about 50% at 3 years.81,82

Calcitonin has recently been shown to reduce risk of new vertebral fracture by about one third in women with prevalent vertebral fractures.72

Teriparatide (Forteo), is a preparation of recombinant parathyroid hormone given by subcutaneous injection. It has been shown to lower the risk of vertebral fractures and increase bone mineral density in postmenopausal women with osteoporosis,83 and was recently approved by the US Food and Drug Administration. It acts on osteoblasts to stimulate new bone formation.

REFERENCES
3. Holbrook TL, Grazier K, Kelsey JL, Stanfill RN. The frequency of occurrence, impact and cost of musculoskeletal
47. Yoshimura M. Analgesic mechanisms of calcitonin. J Bone

ADDRESS: Daniel J. Mazanec, MD, Director, Spine Center, Rheumatologic & Immunologic Disease, C21, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail: mazanec@ccf.org.