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Neurological mechanisms of chest pain 
and cardiac disease

E
lectrical stimulation of dorsal segments of the
spinal cord has been used to treat patients with
severe angina pectoris that is refractory to con-
ventional therapies. The concept is based on

the “gate control theory” first proposed by Melzack
and Wall,1 in which a neuronal “gate” in the dorsal
horn of the spinal cord controls the flow of noxious
stimuli to the brain. Thus, spinal cord stimulation
(SCS) can be thought of as “closing the gate” on pain.
In the most often-used technique, an electrode is
inserted over the dorsal columns and placed in the seg-
ments where electrical stimulation elicits paresthesias
in the painful dermatomes. SCS activates large affer-
ent fibers that have the ability to suppress stimuli from
small fibers transmitting nociceptive information, and
thereby “closes the pain gate.”

This article will briefly review the efficacy of SCS
in relieving angina pectoris, provide an overview of
the spinal processing of cardiac nociceptive informa-
tion and the neural mechanisms of referred pain in
the thoracic and cervical spinal cord, and examine
the effects of SCS on the heart.

■ SUCCESS RATES WITH SCS
Success rates achieved with SCS for angina pectoris
are in excess of 80%.2–4 In patients with angina under-
going SCS, the severity and frequency of anginal
episodes are reduced, and in some cases episodes are
eliminated.5–8 The intake of nitrates to relieve angina
pain is also markedly decreased.9 In addition to pain
relief, clinical studies using SCS for the treatment of
chronic refractory angina demonstrate increases in
exercise tolerance, improvements in ischemia-related
electrocardiographic changes (ST segment), and
improvements in the quality of life.3,6,8,10 Animal stud-
ies also indicate that SCS reduces the nociceptive sig-
nal and improves the function of the heart.11–16

■ SPINAL PROCESSING OF CARDIAC NOCICEPTIVE
INFORMATION

The challenge is to determine the neural mechanisms
underlying angina pectoris that contribute to the suc-
cess of SCS. Fifteen years of research at the
University of Oklahoma, focusing on spinal process-
ing of cardiac nociceptive impulses, have identified
the C1-C2 and the T2-T4 segments of the spinal cord
as critical for processing information in the neural
hierarchy regulating cardiac and respiratory control.

Neural mechanisms of referred pain 
in the thoracic spinal cord
The responses of individual spinothalamic tract
(STT) cells, the cells of origin in the gray matter of
the thoracic spinal cord, to nociceptive input from
the heart have been assessed by transient coronary
artery occlusion or injection of algesic chemicals into
the heart, followed by examination of somatic fields.17

A distribution of STT cells with convergence of
somatic and cardiac input was found at the T1-T5
segments. Neurons in the C5 and C6, but not the C7
and C8, segments also responded to cardiac or somatic
input, primarily in the proximal region. The receptive
fields were located primarily in deep muscle rather
than cutaneous tissue.

These findings provide insight into the character-
istics of referred pain:

• Pain of visceral origin is referred to somatic
regions that are innervated from the same spinal
segments as the heart.

• The pain is generally referred to proximal, but
not distal, somatic structures.

• The referred pain is experienced as deep pain.

Neural mechanisms of referred pain 
in the cervical spinal cord
Neck and jaw pain in some patients with angina pec-
toris served as a basis for exploring neural mechanisms
of referred pain in the cervical spinal cord. Early clin-
ical observations of neck pain being unmasked after
sympathectomy to reduce angina pectoris led to the
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hypothesis that STT cells in the C1-C2 region
receive cardiac input.18,19 To address this hypothesis,
recordings were made from STT cells located in the
C1-C2 spinal segments.20,21 Coronary occlusion or
injection of algesic chemicals into the heart before
and after bilateral vagotomy, or electrical stimulation
of cardiopulmonary afferent fibers and thoracic vagal
afferents, was used to activate the neurons.

Electrical stimulation of vagal and cardiac sympa-
thetic nerves showed that STT cells in C1-C2 were
more responsive to stimuli from vagal afferents than
from cardiac sympathetic afferents, and that the
somatic fields for these cells were located primarily in
the jaw and neck regions.20 In addition, bilateral
vagotomy markedly reduced the nociceptive input
produced by injecting algesic chemicals in the heart,
as evidenced by reduced activity of these STT cells in
the cervical region.21 Since only 6% of the vagal affer-
ents project directly to the C1-C2 spinal neurons, the
rest most likely ascend into the nucleus tractus soli-
tarius and then synapse on cells with axons projecting
to the C1-C2 segments.22 This finding suggests that
the vagus plays an important role in relaying this
information from the heart to the C1-C2 region.
These results also support the clinical observations
that information transmitted in the vagus contributes
to the referral of pain to the neck and jaw. 

Effects of SCS on thoracic STT cells receiving 
cardiac nociceptive information
Spinal cord stimulation of the T1-T2 area in anes-
thetized primates at an intensity of approximately
90% of motor threshold was performed to record STT
cell responses to noxious cardiac input.14 An increase
in cell activity was observed following injection of
bradykinin in the heart via the left atrium, which was
suppressed with SCS (Figure 1). The limiting factor
of this study was using animals with normal hearts;
study of hearts with previous infarction or ischemic
hearts would be more relevant clinically. Never-
theless, this study shows a significant decrease in the
processing of impulses in STT cells when the spinal
cord stimulator was turned on. This effect is attrib-
uted to inhibitory mechanisms impinging on the STT
cells and potentially a reduction in nociceptive input
from the heart to the spinal cord.

■ EFFECTS OF SCS ON THE HEART

The intrathoracic intrinsic cardiac nervous system
and SCS
Evidence supports the notion that SCS may alter the
function of the intrinsic cardiac nervous system to pro-

tect the heart. We first looked at the effects of stimula-
tion at the T1-T4 region where processing of several
different types of neurons is abundant.11,15 Recent
canine studies have shown that SCS of the T1-T2 dor-
sal columns using “clinical parameters” (50 Hz, 0.2 ms
duration) and an intensity of 90% of motor threshold
significantly reduces activity generated by the intrinsic
cardiac neurons in their basal conditions and in the
presence of regional ventricular ischemia.15 Another
interesting observation is that SCS stabilized these neu-
rons for long periods, even after the stimulus was termi-
nated.11 Clinical studies support this observation, indi-
cating that a cardioprotective benefit may persist even
after discontinuing SCS therapy for long periods.23

Infarct size and SCS
The effect of SCS on infarct size was explored in a
rabbit model using a transient coronary artery occlu-
sion.24 The rabbit was chosen as the model because it
does not have collateral blood vessels in the heart.25 It
is known that exogenous catecholamines can protect
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FIGURE 1. Effects of spinal cord stimulation (SCS) on cardiac-
evoked activity of thoracic spinothalamic tract (STT) cells. Control:
spontaneous activity; bradykinin: intra-atrial injections of
bradykinin; SCS: electrical stimulation of the T1-T2 dorsal columns
(~80 Hz; 0.25 ms) at an intensity of ~90% motor threshold; recov-
ery: spontaneous activity following the bradykinin response. The line
above “bradykinin” indicates that three bars represent responses to
bradykinin, and the line above “SCS” represents bradykinin plus
SCS (which applies to the second of these three bars). The activity
of STT cells in response to bradykinin injection was significantly
diminished with SCS to levels observed in controls. Adapted from
Chandler et al, Eur Heart J 1993; 14:96–105, by permission of the
European Society of Cardiology.
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the rabbit heart from transient myocardial infarction,
an effect that is prevented by alpha-receptor block-
ade, but endogenous myocardial catecholamines are
not essential for protection from ischemic precondi-
tioning in the rabbit.26–30 It is also known that adreno-
ceptors are found on subpopulations of neurons within
the intrathoracic cardiac neuronal hierarchy.31,32

Modulation of these receptors can influence the
progress of cardiac pathology.33,34 Our hypothesis,
therefore, was that preemptive SCS could reduce
myocardial apoptosis, and could reduce infarct size as
a result of activation of adrenergic receptors. 

Stimulation of the dorsal surface of the T1-T2 seg-
ments using “clinical parameters” (50 Hz; 0.2 ms;
90% of motor threshold) was applied approximately
15 minutes before the left coronary artery was occluded
and then both the occlusion and SCS continued for
30 minutes (Figure 2). This was followed by a 3-hour
reperfusion period. The infarct was measured by using
tetrazolium, and the risk zone was determined by
using fluorescent microspheres. The infarct size was
expressed as a percentage of the risk zone. Infarct size
was 36% of the risk zone with only left coronary
artery occlusion (control). SCS reduced the infarct
size to approximately 22%, which was significantly
smaller than the control infarct size. Preconditioning
by administering a 5-minute occlusion, waiting 10
minutes, and then occluding the artery for 30 minutes
also reduced the infarct size to 22% of the risk zone.

Infarct size increased to that observed in the controls
following treatment with the alpha-blocker prazosin;
beta-blocker treatment with timolol also increased
infarct size compared with SCS during coronary
artery occlusion without the blockers. From these
data, we conclude that SCS has the ability to
decrease the infarct size by changing the environment
of the heart with respect to the adrenoreceptors.

■ SUMMARY
SCS is an efficacious, reversible, and safe therapy that
improves quality of life, increases exercise tolerance,
and relieves angina pectoris, but clinical trials in
North America are needed to confirm the data com-
ing from Europe.

Neuronal convergence onto STT cells underlies
the referred pain associated with angina pectoris.
With pain referred to the chest and upper arm, car-
diac nociceptive information is transmitted via sym-
pathetic afferent fibers to thoracic cells. With pain
referred to the jaw and neck, cardiac nociceptive
information is transmitted via vagal afferent fibers
onto cervical cells. SCS can modulate the responses
of thoracic STT cells to nociceptive input originating
from the heart.

SCS modulates cardiac function. It stabilizes neu-
rons in the intrinsic cardiac nervous system, and can
reduce infarct size via adrenoreceptors. 
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