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■ ABSTRACT

Preconditioning is a phenomenon in which the brain
protects itself against future injury by adapting to
low doses of noxious insults. Preconditioning stimuli
include ischemia, low doses of endotoxin, hypoxia,
hypothermia and hyperthermia, cortical spreading
depression, anesthetics, and 3-nitropropionic acid,
among others. Understanding of the mechanisms
underlying preconditioning has been elusive, but
NMDA receptor activation, nitric oxide, inflammatory
cytokines, and suppression of the innate immune sys-
tem appear to have a role. Elucidation of the endoge-
nous cell survival pathways involved in precondition-
ing has significant clinical implications for preventing
neuronal damage in susceptible patients.

T
he brain relies upon internal defense mecha-
nisms for protection from injurious stimuli.
Preconditioning is a phenomenon whereby low
doses of these noxious insults shield the brain

from future insults rather than inflicting damage.
Preconditioning stimuli include but are not limited to
transient global and focal ischemia,1–4 cortical spread-
ing depression,5–7 brief episodes of seizure, exposure to
anesthetic inhalants,8–10 low doses of endotoxin (lipo-
polysaccharide [LPS]),11,12 hypothermia and hyperther-
mia,13,14 and 3-nitropropionic acid treatment.15,16

Depending on the specific preconditioning stimulus,
a state of neuronal tolerance can be established in at
least two temporal profiles: one in which the trigger
induces protection within minutes (rapid or acute tol-
erance),17 and one in which the protected state devel-
ops after a delay of several hours to days (delayed toler-
ance).4 Some preconditioning paradigms induce both

phases of ischemic tolerance, while others can induce
only the acute phase or only the delayed phase.18–21 The
acute phase is most likely due to rapid posttranslational
modifications of proteins.22,23 In contrast, the delayed
phase is dependent on de novo protein synthesis.24,25

Preconditioning by ischemic tolerance was first
identified in the heart by Murry et al,26 and was sub-
sequently found to occur in the brain4,27 and a variety
of organs including the liver, intestine, kidney, and
lung. Preconditioning stimuli can be cross-tolerant,
safeguarding against other types of injury. For exam-
ple, endotoxin preconditioning can protect against
subsequent ischemia and vice versa. Thus, there may
be some overlapping mechanisms in preconditioning,
and unraveling these pathways may uncover an arse-
nal of neuroprotective therapeutic targets. In this
review, we will compare different preconditioning
paradigms and discuss potential mechanisms in initi-
ating brain ischemic tolerance.

■ PARADIGMS TO ESTABLISH PRECONDITIONING
Refinement of various preconditioning models is of
great clinical significance. Cardiovascular or cere-
brovascular surgery has a negative impact on brain
function due to stoppage of blood flow during surgery.
In fact, more than 25% of patients who receive coro-
nary artery bypass surgery suffer from temporary or
permanent memory loss.28,29 As a result, it is of pre-
mier importance to develop strategies to protect the
brain either prior to vascular surgeries or in patients at
high risk of stroke. While it would be dangerous and
impractical to precondition at-risk patients with
ischemia, the identification of underlying precondi-
tioning mechanisms may lead to safer therapeutic fac-
tors that can be administered before surgery.

Ischemia
Global ischemic preconditioning in the brain is accom-
plished by occlusion of the bilateral common carotid
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arteries. In contrast, in focal ischemic preconditioning,
occlusion of one side of the middle cerebral artery is
induced for about 1 to 20 minutes, depending on meth-
ods and animal species.4,30–32 Twenty-four hours after
ischemic preconditioning, stroke is induced in these
animals. Preconditioning-induced neuroprotection is
observed not only in terms of infarct volume but also in
terms of neurological scores and behavior studies.

Lipopolysaccharide 
Tolerance to ischemic injury can also be induced by a
small dose of LPS injected into the peritoneal cavity.
Dosages vary from 0.05 to 1 mg/kg body weight in
small rodents such as mice and rats.11,33–36 This dose of
LPS usually does not bring abnormal signs and symp-
toms to the animals. The ischemic protection yields a
reduction of infarct volume of approximately 30%.
This tolerant state can be sustained for about 1 week,
with maximum protection occurring around 2 to 3
days after injection of LPS.

Hypoxia
A relatively convenient method for preconditioning
animals is hypoxic exposure. Animals are put in a
chamber in which oxygen and nitrogen proportions can
be controlled. Oxygen concentration usually ranges
from 8% to 13% with normobaric pressure.  Exposure
time ranges from 1 to 6 hours. Twenty-four to 72 hours
later, transient or permanent focal stroke is induced in
the animals.37–40 Hypoxia-preconditioned neuropro-
tection usually starts at 1 to 3 days with a significant
reduction of infarct size. Hypoxic preconditioning has
also been demonstrated for in vitro neuron culture
models using oxygen-glucose deprivation injury.41

3-Nitropropionic acid
3-Nitropropionic acid (3-NP) is an irreversible
inhibitor of succinate dehydrogenase, an enzyme
required for oxidative phosphorylation and adenosine
triphosphate production. When applied at low doses
1 to 4 days before ischemia, 3-NP can lead to
ischemic tolerance in the forebrain of gerbils and
rats.16,42,43 The dose ranges from 1 to 20 mg/kg body
weight.16 Such treatment significantly improves neu-
rological behavior and increases neuronal survival in
the CA1 region of hippocampus. In addition, 3-NP
preconditioning induces tolerance to hypoxia in hip-
pocampal slice preparations.15,44

Hypothermia and hyperthermia
Hypothermia is a well-characterized protective proce-
dure used during and after cerebral surgery. It is also
reported that brief hypothermic or hyperthermic expo-
sure can also lead to ischemic tolerance. The tempera-

tures adopted range from 25°C to 32°C13,45,46 in hypo-
thermia and from 42°C to 43°C in hyperthermia.14

Cortical spreading depression
Cortical spreading depression is defined as the electro-
physiologic phenomenon of slowly propagating transient
depolarization waves across the cortex. Usually 5 M of
potassium chloride is infused into the cortex, or a cot-
ton pad soaked with the solution is put on the surface
of dura mater, which results in depolarization, firing of
neurons, and cortical spreading depression. Cortical
spreading depression induces a prolonged phase of
ischemic tolerance that lasts 1 to 7 days.5,6,47,48

Anesthetics
Exposure to volatile anesthetics such as isoflurane and
halothane within pharmacologic concentration
ranges also confers delayed-phase ischemic tolerance
of the brain.8–10,49

■ MOLECULAR PRECONDITIONING PATHWAYS
Mechanistically, cellular preconditioning can be sub-
divided into intrinsic neuronal pathways (preventing
excitotoxic damage, signaling through anti-apoptotic
molecules, and treatment by neurotrophic factors) or
extrinsic nonneuronal pathways (peripheral cytokine
production, microglial activation, and regulation of
the cerebrovascular system). Several neuroprotective
molecules are expressed and signal through multiple
cell types both within and peripheral to the brain, so
that assigning an exact source and paradigm for pre-
conditioning pathways has proven difficult. 

NMDA receptor activation and excitotoxicity protection
In neurons, ischemic tolerance is mediated largely by
the activation of the N-methyl-D-aspartate (NMDA)
glutamate receptors through increases in intracellular
calcium.50–52 Although glutamate receptor activation is
generally believed to be responsible for much of the
neuronal damage caused by excitotoxicity, it appears to
also be implicated in the establishment of precondi-
tioning. One study demonstrated that exposure of cor-
tical cell cultures to low levels of glutamate activated
NMDA receptors in preconditioning.50 In addition,
preconditioning by oxygen-glucose deprivation was
blocked when an NMDA antagonist was applied.
NMDA receptor activation can induce a tolerant state
through rapid adaptation of the voltage-dependent cal-
cium flux. In addition, activation of NMDA receptors
leads to rapid release of brain-derived neurotrophic fac-
tor, which then binds to and activates its cognate
receptor, receptor tyrosine kinase B. Both NMDA and
tyrosine kinase B receptors activate nuclear
factor–kappa B (NF�B), a transcription factor involved
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in protecting neurons against insults. In sublethal
ischemic preconditioning, activation of NF�B and its
translocation from the cytosol to the nucleus was
required for the development of late cerebral protection
against severe ischemia or epilepsy.53 Other key media-
tors involved in synaptic NMDA receptor–dependent
neuroprotection are phosphatidylinositol 3-kinase
(PI3K), Akt, and glycogen synthase kinase 3-beta.54

Preconditioning with cortical spreading depression
results in the downregulation of the excitatory amino
acid transporters EAAT1 and EAAT2 from cerebral
cortex plasma membranes.55 Although these trans-
porters are normally involved in glutamate uptake, it
has been suggested that the influx of sodium that occurs
during excitotoxicity may cause their reversal and result
in additional glutamate release. Downregulating these
transporters may thus contribute to ischemic tolerance.

Nitric oxide
Nitric oxide (NO) may play a key role as a mediator of
the neuronal ischemic preconditioning response, either
in conjunction with or independent of NMDA receptor
activation. Both the inhibition of nitric oxide synthase
(NOS) and the scavenging of NO during precondition-
ing significantly attenuated the induced neuronal toler-
ance, and neither endothelial NOS nor neuronal NOS
knockout mice showed protection from rapid ischemic
preconditioning.56,57 Treatment with the inducible NOS
(iNOS) inhibitor aminoguanidine abolished the
induced protection. The mechanisms responsible for
NO-induced tolerance are not clear. Downregulation of
the glutamate transporter GLT-1 might play a role.58 A
common link to NMDA receptor activation and NO is
p21ras (Ras). Preconditioning induces p21ras activation in
an NMDA- and NO-dependent manner and leads to
the downstream activation of Raf kinase, mitogen-
activated protein kinases, and extracellular regulated
kinase.59 Inhibition of these kinases attenuates subse-
quent protection from ischemia.60,61 Pharmacologic
inhibition of Ras, as well as a dominant negative Ras
mutant, blocked preconditioning, whereas a constitu-
tively active form of Ras promoted neuroprotection
against lethal insults. An important consideration
regarding NO is also that preconditioning by volatile
anesthetics appears to involve NO pathways.9

NO and reactive oxygen species (ROS) are also
implicated in regulating the peripheral cerebrovascu-
lar system. Ischemia generated by occlusion of the
middle cerebral artery causes defects in cerebrovascu-
lar function for not only the infarcted area but also
the surrounding ischemic region. LPS precondition-
ing has been reported in some cases to increase this

regional cerebral blood flow both before and after
ischemia.1,21,36,62–64 LPS also improves microvascular
perfusion.33,64 It was recently reported that LPS-stim-
ulated cerebral blood flow is induced through reactive
oxygen and nitrogen species (ROS or NO).1 Mouse
knockouts of iNOS (NO production) or of the nox2
subunit of NADPH oxidase (ROS production) elimi-
nated the LPS-upregulated cerebrovascular activity.
Furthermore, blockage of these ROS and NO path-
ways reduced the preconditioning effect of LPS.
Therefore, LPS may play a more direct role in pre-
venting ischemic damage by increasing blood avail-
ability to the affected brain region.

Inflammatory cytokines and the innate immune system
LPS, a component of the gram-negative bacterial cell
wall, can illicit a potent innate immune response.
While this systemic inflammatory response can be
destructive (at doses of 5 mg/kg),65 tolerable LPS doses
of 0.05 to 1 mg/kg injected intraperitoneally render the
brain,11 heart,66,67 liver,68,69 kidneys,70 and pancreas71

transiently resistant to subsequent ischemic injury.
This preconditioning paradigm relies on the ability of
a peripheral signal to cross into multiple organ systems.
LPS injected into the gut can signal through peritoneal
macrophages and circulating monocytes. Toll-like
receptor 4 is a pattern-recognition receptor that binds
to pathogen-associated molecular patterns in LPS and
initiates a signaling cascade through the NF�B path-
way. This pathway culminates in the expression and
secretion of several proinflammatory cytokines to fight
off the infection and anti-inflammatory cytokines to
control the immune response.

The major output of LPS signaling is innate pro-
duction of proinflammatory cytokines to fight infec-
tion and clear cellular debris. Central cytokines,
including tumor necrosis factor–alpha (TNF�), inter-
leukin-6 (IL-6), and interleukin-1 beta (IL-1�), can
be neurodestructive if administered after ischemia.
TNF� administration by cerebroventricular injection
after ischemia augmented the extent of injury, and
blockage of TNF� signaling proved neuroprotec-
tive.11,72,73 However, in LPS preconditioning, cytokine
production precedes ischemia. Intracisternal injec-
tions of TNF� before middle cerebral artery occlusion
(MCAO) were protective in reducing the infarct size
of pretreated mice.74 Furthermore, intracisternal
injection of ceramide analog, a downstream compo-
nent of the TNF� signaling pathway, was also capable
of reducing the MCAO infarct area.75 Preischemic
treatment with IL-6 and IL-1 also reduced neuronal
damage.76,77 TNF� knockout mice eliminated the LPS
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protective phenotype,72 demonstrating that cytokine
production is a critical feature of LPS preconditioning
in ischemia. Additionally, ischemic damage in the
absence of LPS preconditioning was exacerbated in
TNF� receptor 1 knockout mice.78,79 Consistently,
TNF� protein levels are upregulated after LPS treat-
ment but are downregulated following LPS-precondi-
tioned MCAO.72 A unifying theme in LPS precondi-
tioning comprises early activation of the innate
immune system with ensuing suppression in ischemia.

As a potential mechanism, the initial inflammato-
ry response induced by LPS appears to render the
innate immune system hyporesponsive to subsequent
insults such as ischemia. This may occur by persist-
ence of anti-inflammatory cytokines produced by the
primary insult. These molecules are expressed in tan-
dem with proinflammatory cytokines to control the
innate immune response, but may also play a role in
delayed preconditioning. For instance, intravenous or
intracerebroventricular IL-10 injection can reduce
the infarct size with MCAO.80 Alternatively, several
proinflammatory cytokine signaling pathways may be
downregulated by negative feedback inhibition.20,81

This inhibition may occur extracellularly, using solu-
ble cytokine receptors, decoy receptors, or receptor
antagonists. For example, intravenous injection of IL-1
receptor antagonist can provide neuroprotection
against ischemic injury from MCAO.82,83 Cytokine
feedback inhibitors that act intracellularly are also
induced with the innate immune response. Intra-
cellular inhibition may involve direct downregulation
of cytokine transcription (peroxisome proliferator-
activated receptor gamma [PPAR-�]) or inhibition of
intracellular signaling pathways that promote cyto-
kine production (suppressor of cytokine signaling
[SOCS] and PI3K). Antisense mRNA knockdown of
SOCS-3 exacerbates ischemic injury from MCAO.84

The MCAO infarction area is increased after treat-
ment with PPAR-� antagonists and decreased by
PPAR-� agonists.85,86 Administration of compounds
that increase PI3K signaling is also capable of reducing
ischemic damage.87 Thus, several defense mechanisms
designed to suppress the innate immune response may
play an active role in LPS ischemic preconditioning.
Role of microglia in ischemic preconditioning
Microglia represent the resident central nervous system
(CNS) component of the innate immune system.
Microglia and macrophages become activated with
ischemia in the infarcted and surrounded area.88 Upon
activation in ischemia, microglia will become phago-
cytic and secrete a multitude of noxious chemokines
and cytokines.89 Accordingly, anti-inflammatory anti-

biotics such as doxycycline and minocycline reduce
microglial activation and diminish the ischemic infarc-
tion area.90 Preconditioning the brain with LPS ame-
liorates microglial activation, neutrophil infiltration,
and circulating monocyte activation following
MCAO.35 However, primary ischemic damage is not
correlated with CNS infiltration of peripheral leuko-
cytes but rather with an increase in proliferating resi-
dent microglial cells.91 Alternatively, microglia can
exhibit neuroprotective properties within the brain.92

In fact, greater ischemic damage from longer periods of
MCAO is correlated with fewer proliferating
microglia, suggesting a protective microglial role.91

Consistently, ablation of proliferating microglia
increases the infarction area following MCAO.93

Therefore, microglia can be protective in ischemia,
and preconditioning with LPS may render microglia
more capable of reacting to ischemic conditions.

■ CONCLUSIONS
Preconditioning represents an adaptive response to
prime the brain for protection against future injury.
Elucidation of these endogenous cell survival path-
ways has significant clinical implications for prevent-
ing neuronal damage in susceptible patients. For this
reason, understanding the underlying mechanisms in
establishing a tolerant state will be a critical step in
adapting preconditioning for safe patient applica-
tions. The field of ischemic research has made great
strides in deciphering causative preconditioning fac-
tors but has been hampered by the complex, multi-
factorial nature of preconditioning paradigms. The
study of tolerance is further complicated by the fact
that signaling takes place both peripheral to and
within the brain in multiple cell types. Future
research will require the exploration of interactions
between multiple pathways and roles of individual
cell types in establishing ischemic tolerance. Only
with a more thorough understanding of precondition-
ing mechanisms can we adapt these pathways for the
most efficient and protective treatments.
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