Managing bloodstream infections in patients who have short-term central venous catheters

ABSTRACT

Catheter-related bloodstream infections can be complicated to manage, but a growing body of evidence supports specific recommendations. In 2009, the Infectious Diseases Society of America published updated guidelines for the diagnosis and management of all intravascular catheter-related infections. Here we provide a focused review on the management of bloodstream infections in adult patients with short-term (not surgically implanted and not tunneled) central venous catheters, including peripherally inserted central catheters. This review should serve as a ready reference for providers (eg, hospitalists, surgeons, physician assistants, nurse practitioners, intensivists) managing adult patients with short-term central venous catheters in place.

KEY POINTS

Most bloodstream infections related to central venous catheters occur in patients with short-term central venous catheters; these infections result in significant morbidity and health care costs.

Initial management of suspected cases requires decisions about whether to retain or remove the catheter and the choice of empiric antibiotic therapy.

Management should be based on the specific pathogen isolated.

An infectious disease specialist should be consulted in complicated cases or when multidrug-resistant bacteria or uncommon pathogens are isolated.

doi:10.3949/ccjm.77a.10015
move or retain the catheter) based on the specific pathogen identified?

Adding to the complexity of these decisions are increasingly resistant microorganisms, heterogeneity of affected patient populations, and variability in the quality and availability of evidence.

This review provides a concise guide to managing bloodstream infections related to short-term CVCs, based on updated guidelines from the Infectious Diseases Society of America (IDSA).1

DEFINITION AND DIAGNOSTIC CRITERIA

We have adapted the following definition and diagnostic criteria from the general definition and diagnostic criteria for catheter-related bloodstream infections proposed by the IDSA.

Bloodstream infection related to a short-term CVC is defined as bacteremia or fungemia in a patient with the CVC in place, clinical manifestations of infection (eg, fever, chills, hypotension), and no apparent source of the bloodstream infection aside from the catheter. At least one of the three diagnostic criteria should be met:

- Cultures of the catheter tip and of the peripheral blood grow the same organism. Catheter tip culture should be quantitative, with more than 10^2 colony-forming units (cfu) per catheter segment, or semi-quantitative, with more than 15 cfu per catheter segment.
- Blood drawn from the catheter lumen grows the same organism as blood drawn from a peripheral vein (or less optimally, a different lumen), but at three times the amount by quantitative culture.
- Blood drawn simultaneously from the catheter lumen and from a peripheral vein (or less optimally, a different lumen) grows the same organism, and growth from the CVC lumen sample is detected (by automated blood culture system) at least 2 hours before growth from the peripheral vein sample.

MANAGING BLOODSTREAM INFECTIONS IN PATIENTS WITH SHORT-TERM CVCs

The following section addresses specific questions in the order they arise in the management of bloodstream infections related to short-term CVCs. **Figure 1** and **Figure 2** are flow diagrams to guide initial and pathogen-specific management of suspected and confirmed cases and may serve as a quick reference for busy providers.

When to remove a potentially infected short-term CVC

Not all patients with a suspected bloodstream infection related to a short-term CVC need to have the catheter removed. A number of studies4,6 have shown that a substantial portion of clinically suspected cases are actually not catheter-related.

In a nonneutropenic intensive care population, Bouza et al1 found that, of 204 episodes of clinically suspected bloodstream infection from a short-term CVC, only 28 (14%) were
confirmed to be catheter-related, 27 (13%) were bloodstream infections that were not catheter-related, 36 (18%) involved catheter-tip colonization with negative blood cultures, and the remainder were cases with negative catheter-tip and blood cultures.

Rijnders et al,5 in a study of 100 adult medical-surgical intensive care patients with a clinically suspected bloodstream infection related to a short-term CVC, found only three confirmed cases.

A randomized clinical trial comparing early removal of short-term CVCs and watchful waiting in an adult intensive care population with clinically suspected bloodstream infections showed no difference between treatment groups in length of stay in the intensive care unit or in the mortality rate.6 This trial included a low-risk subset of adult medical-surgical intensive care patients (ie, immunocompetent, no intravascular foreign body, no evidence of severe sepsis or septic shock, no evidence of infection at the catheter insertion site, no proven bacteremia or fungemia). These results suggest that a similar subset of patients can be safely monitored without catheter removal while being assessed for possible catheter-related bloodstream infection.

Empiric catheter removal vs watchful waiting has not and likely will not be studied in higher-risk populations. In this group, clinical judgment should outweigh any specific management algorithm. In patients who are in shock or who are otherwise hemodynamically unstable, early catheter removal should be a priority; however, in some circumstances the risks of immediate catheter removal (eg, coagulopathy with risk of bleeding diathesis, or lack of site to replace the catheter) may outweigh the potential benefits.

Empiric antibiotic therapy for bloodstream infection from a short-term CVC

In order of prevalence, the four most common pathogens are coagulase-negative staphylococci, *Staphylococcus aureus*, *Candida* species, and enteric gram-negative bacilli.7

Gram-positive pathogens. A recent ran-
randomized clinical trial comparing vancomycin and linezolid (Zyvox) treatment for CVC-related bloodstream infections showed that 89 (57%) of 157 S aureus isolates and 95 (80%) of 119 coagulase-negative staphylococcal isolates were resistant to methicillin. Given the prevalence of gram-positive infections and the regularity of methicillin-resistant isolates, vancomycin should be started empirically in cases of suspected bloodstream infection related to short-term CVCs. In institutions where methicillin-resistant S aureus (MRSA) isolates regularly have a vancomycin minimum inhibitory concentration (MIC) of greater than 2 μg/mL, an alternative agent such as daptomycin (Cubicin) should be used.

Gram-negative pathogens. Infections due to resistant gram-negative pathogens have become more common in the past 10 years. Prospective cohort studies have shown that resistant gram-negative infections and inadequate empiric antimicrobial therapy of bloodstream infections independently predict the risk of death. Risk factors for resistant gram-negative infections include critical illness, neutropenia, prior antibiotic therapy, and femoral insertion of the CVC. Patients with these risk factors should receive empiric antibiotic therapy for gram-negative bacilli.

No randomized controlled trial has been done to guide the choice of empiric gram-negative antibiotic coverage. The initial choice should be based on local antimicrobial patterns and susceptibility data and on the severity of the patient’s illness. Initial options include fourth-generation cephalosporins, carbapenems, or combined beta-lactam and beta-lactamase inhibitors. Patients with neutropenia, severe sepsis, or known multidrug-resistant gram-negative bacilli colonization or prior infection should receive empiric combination therapy with two different classes of antibiotics.

Candida. Risk factors for CVC-related bloodstream infections due to Candida species include total parenteral nutrition, prolonged use of broad-spectrum antibiotics, hematologic malignancy, solid organ or bone marrow transplantation, colonization with Candida species at multiple sites, and femoral catheter insertion. Empiric treatment with an echinocandin is recommended for patients with these risk factors. Fluconazole (Diflucan) can be substituted for an echinocandin in patients without azole exposure in the previous 3 months and in settings where the prevalence of Candida krusei and Candida glabrata is low.

Pathogen-Specific Management: Recommendations

Coagulase-negative staphylococci

Most patients with coagulase-negative staphylococcal infections have a benign clinical course.

Although no randomized trial has evaluated different treatment approaches, most experts recommend removing the catheter and giving a short course of antibiotics (ie, 5–7 days). Longer courses of antibiotics may be required for patients with endovascular hardware in place or persistent fever or bacteremia after catheter removal. The IDSA guidelines recommend 5 to 7 days of antibiotic therapy if the catheter is removed, and 10 to 14 days of systemic antibiotic therapy in combination with “antibiotic lock therapy” if the catheter is retained. Antibiotic lock therapy involves instilling a high concentration of an antibiotic to which the organism is susceptible into the catheter lumen and allowing it to dwell.

Not all patients are good candidates for antibiotic lock therapy, and neither are all organisms. In general, patients should be at low risk (immunocompetent, without hardware in place), and organisms should have a low risk of causing metastatic infection. *Staphylococcus lugdunensis* can cause endocarditis and metastatic infections similar to those caused by *S aureus* and so should be managed similarly to *S aureus*.

Staphylococcus aureus

Short-term CVCs infected with *S aureus* should be removed immediately. Removal of vascular catheters infected with *S aureus* has been associated with more rapid clinical response and higher cure rates compared with catheter retention. *S aureus* bacteremia results in hematogenous complications in 20% to 30% of patients, and failure to remove or a delay in removing the catheter increases the risk of complications.
CENTRAL VENOUS CATHETER-RELATED INFECTIONS

There are no data from randomized clinical trials on the optimal duration of antibiotic therapy for *S. aureus* bloodstream infections related to short-term CVCs. Traditionally, 4 weeks have been recommended out of concern for the risk of infective endocarditis, and the IDSA recommends 4 to 6 weeks unless patients meet certain low-risk criteria.

Factors associated with a higher risk of hematogenous complications include the presence of a retained foreign body, an intravascular prosthetic device, retained catheter, immune suppression, diabetes, persistent bacteremia at 72 hours despite catheter removal and appropriate antibiotics, skin changes consistent with septic emboli, or evidence of endocarditis or suppurative thrombophlebitis on transesophageal echocardiography (TEE) or ultrasonography, respectively. TEE is superior to transthoracic echocardiography and is most sensitive when performed 5 to 7 days after the onset of bacteremia. Patients who have had the catheter removed and who do not have any of these risk factors, and in whom TEE performed 5 to 7 days after the onset of bacteremia is negative, can be considered for a shorter duration of therapy (but a minimum of 14 days).

Patients with catheters colonized with *S. aureus* (ie, those with positive catheter-tip cultures and negative blood cultures) are at risk of subsequent bacteremia. This risk may be reduced with anti-staphylococcal therapy started within 24 hours of catheter removal. Patients who have had the catheter removed and who do not have any of these risk factors, and in whom TEE performed 5 to 7 days after the onset of bacteremia is negative, can be considered for a shorter duration of therapy (but a minimum of 14 days).

Patients with catheters colonized with *S. aureus* (ie, those with positive catheter-tip cultures and negative blood cultures) are at risk of subsequent bacteremia. This risk may be reduced with anti-staphylococcal therapy started within 24 hours of catheter removal. Patients who have had the catheter removed and who do not have any of these risk factors, and in whom TEE performed 5 to 7 days after the onset of bacteremia is negative, can be considered for a shorter duration of therapy (but a minimum of 14 days).

Enterococcal species

Up to 10% of nosocomially acquired bloodstream infections are due to enterococci, and many are related to intravascular catheters. Although the risk of endocarditis as a complication of enterococcal CVC-related bloodstream infection is relatively low, estimated at 1.5% in a multicenter prospective study, enterococcal bacteremia lasting longer than 4 days has been independently associated with risk of death. These observational data support routine removal of short-term CVCs infected with enterococci.

The choice of antibiotics for enterococcal infections depends on the susceptibility of the isolate. Sixty percent of *Enterococcus faecium* isolates and 2% of *Enterococcus faecalis* isolates are vancomycin-resistant, and reports of resistance to newer agents, including linezolid, have been published. Ampicillin is the preferred antibiotic for treatment of ampicillin-susceptible enterococci. Vancomycin should be used if the pathogen is ampicillin-resistant and vancomycin-susceptible. Enterococci resistant to both ampicillin and vancomycin can be treated with linezolid or daptomycin, based on susceptibility data.

For combination therapy with an aminoglycoside, the data are mixed. Retrospective observational studies have shown no difference in outcomes in uncomplicated enterococcal bacteremia with combination therapy vs monotherapy. However, in a large series of patients with enterococcal infections in which the catheter was retained, the combination of gentamicin and ampicillin was more effective than monotherapy. No controlled trial has been done to define the optimal duration of antibiotic therapy for enterococcal bloodstream infections related to short-term CVCs, but the IDSA recommends 7 to 14 days. If catheter salvage is attempted, concurrent antimicrobial lock therapy is recommended based on expert opinion. Catheters should be removed if complications arise (eg, insertion site or pocket infection, suppurative thrombophlebitis, sepsis, endocarditis, persistent bacteremia, metastatic infection). Signs and symptoms of endocarditis, persistent bacteremia, or the presence of a prosthetic heart valve should prompt evaluation with TEE.

Gram-negative bacilli

Given the propensity of many gram-negative bacilli to form a biofilm, a number of studies have advocated removing CVCs infected with gram-negative bacilli. Recent studies examining the role of combination systemic

Vancomycin resistance rates:
- *Enterococcus faecium* 60%,
- *E faecalis* 2%
antibiotic therapy and antibiotic lock therapy of gram-negative infections have found high success rates.45,46

The IDSA recommends routine removal of short-term CVCs infected with gram-negative bacilli and 7 to 14 days of systemic antibiotic therapy based on microbial susceptibility data. Antibiotic options generally include fourth-generation cephalosporins, carbapenems, or a combination beta-lactam and beta-lactamase inhibitor. The first-line treatment for Stenotrophomonas maltophilia and Burkholderia cepacia is trimethoprim-sulfamethoxazole (Bactrim). Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli should not be treated with cephalosporins or piperacillin-tazobactam (Zosyn) even if the organisms are susceptible in vitro, as doing so has been associated with poor clinical outcomes.11,47

There is growing concern over multiple-drug-resistant gram-negative bacilli that confer resistance to carbapenemases. No controlled study has evaluated treatment of multiple-drug-resistant gram-negative bacilli that require therapy with polymyxin (Colistin).

Candida species

The benefit of removing the CVC in the setting of candidemia is supported by six prospective studies.48–53 Patients with catheter-related bloodstream infections due to *Candida* species should have the catheter removed. *C albicans* and azole-susceptible candidal strains can be effectively treated with fluconazole at a dosage of 400 mg daily, continued for 14 days following the first negative blood culture.54 Echinocandins as first-line therapy and lipid formulations of amphotericin B (Abelcet) as an alternative are both highly effective for the treatment of *Candida* species with decreased susceptibility to azoles (eg, *C glabrata* and *C krusei*).55–57

Other gram-positive microorganisms

The isolation of *Corynebacterium*, *Bacillus*, and *Micrococcus* species from a single blood culture does not prove bloodstream infection, and confirmation requires at least two positive results drawn from different sites. CVC infections with these organisms are difficult to treat unless the infected catheter is removed.58,59

ADDITIONAL RECOMMENDATIONS

Infectious disease consultation should be considered for patients with complicated bloodstream infection related to a short-term CVC. Complicated cases include catheter infections in patients with hemodynamic instability, endocarditis, suppurative thrombophlebitis, persistent bloodstream infection despite 72 hours of appropriate antimicrobial therapy, osteomyelitis, active malignancy, or immunosuppression.

Infectious disease consultation should also be sought for assistance with determining if a patient is a candidate for antibiotic lock therapy; for management, dosing, and course of antibiotic lock therapy; for assistance with antibiotic choice and course for multiple-drug-resistant gram-negative bacilli; and for recommendations on management of infections due to uncommon pathogens (eg, *Corynebacterium jeikeium*, *Chryseobacterium* species, *Malassezia furfur*, and *Mycobacterium* species).

The IDSA recommends routine removal of short-term central venous catheters infected with gram-negative bacilli.

REFERENCES

44. Elting LS, Bodey GP. Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: increasing...

ADDRESS: Naomi P. O’Grady, MD, Critical Care Medicine Department, National Institutes of Health, Building 10 Room 2C142, 10 Center Drive MSC 1662, Bethesda, MD 20892; e-mail nogrady@mail.cc.nih.gov.

80 Years ago in the Cleveland Clinic Bulletin

While neither the cause of malignant disease nor its cure has yet been found, de-spite world-wide researches and vastly extending clinical experience, nevertheless great progress toward the conquering of this scourge of the human race has been made by the disproof of many false theories, by the discrediting of many so-called “cures,” the studies of the incidence of malignancy in relation to age, race, climate, and the different bodily tissues, by investigations of its method of growth, and by the observation of the effects upon it of various physical and chemical agents. From all of these studies the practical results have been meager. We have learned, however, that cancer, whether of the external and visible parts or of the internal, invisible organs, obeys one general law of growth, and the old dictum based entirely upon clinical experience is established more uniformly than ever—name-ly, that the one and only cure for cancer is its early and complete removal.