Osborn waves: An inverse correlation with core body temperature

Although Osborn waves are a marker of hypothermia, they also occur in nonhypothermic conditions.

A 22-year-old man was brought to the emergency room after a motor vehicle accident. He was in a deep coma, with a Glasgow coma score of 4 out of 15 (3 being the worst score) and a core body temperature of 36°C (96.8°F). The next day, clinical evidence of brain death was noted, and his core body temperature dropped as low as 29.6°C (85.3°F). At that time, his electrocardiogram revealed sinus bradycardia, with a rate of 48 beats per minute, PR interval 0.24 second.

FIGURE 1. Sinus bradycardia, heart rate 55 beats per minute. The patient’s core body temperature was 36°C (96.8°F). There are no evident J waves.

FIGURE 2. Sinus bradycardia, heart rate 50 beats per minute; low-amplitude J waves are visible in leads V₅, V₆, and V₇ (arrows). The patient’s core body temperature was 31°C (87.8°F).
Osborn waves are a marker of hypothermia, they also occur in nonhypothermic conditions. Brainstem death is a precursor of the J wave, and this is explained by impaired thermoregulatory ability resulting from hypothalamic dysfunction and subsequent hypothermia.

The three electrocardiograms presented here illustrate several points:

- Classic findings in hypothermia include J waves, sinus bradycardia, prolongation of the PR interval, widening of the QRS complex, and prolongation of the QT interval.
- The lower the core body temperature, the higher the amplitude of the J wave.
- The J wave in brain death (unlike hypothermic causes of the J wave) is not associated with the characteristic signs of shivering in the surface electrocardiogram.
- As hypothermia becomes more profound, the J wave becomes evident in all leads, not only the inferolateral leads.

REFERENCES


ADDRESS: Hesham R. Omar, MD, Internal Medicine Department, Mercy Hospital and Medical Center, 2525 South Michigan Avenue, Chicago, IL 60616; e-mail hesham_omar2003@yahoo.com.