Fecal microbiota transplantation for recurrent C difficile infection: Ready for prime time?

■ ABSTRACT

Recurrent Clostridium difficile infection has been a major challenge for patients and clinicians. Recurrence of infection after treatment with standard antibiotics is becoming more common with the emergence of more-resistant strains of C difficile. Fecal microbiota transplantation is an alternative treatment for recurrent C difficile infection, but it is not yet widely used.

■ KEY POINTS

Fecal microbiota transplantation involves instilling gut microbiota from a healthy donor into the diseased gut of a patient who has recurrent or recalcitrant episodes of diarrhea despite antibiotic treatment for C difficile infection. The instillation can be done via nasogastric tube, endoscope, or enema.

Donor screening is necessary to prevent transmission of communicable diseases to the recipient.

Recently published studies indicate that this procedure is effective for treating recurrent C difficile infection. Randomized clinical trials to assess its efficacy and safety are underway.

The field of microbiota therapy is rapidly progressing. More physicians are learning to embrace the concept of fecal microbiota transplantation, and patients are beginning to overcome the “yuck factor” and accept its benefits.

I F YOU HAD A SERIOUS DISEASE, would you agree to an alternative treatment that was cheap, safe, and effective—but seemed disgusting? Would you recommend it to patients?

Such a disease is recurrent Clostridium difficile infection, and such a treatment is fecal microbiota transplantation—instillation of blended feces from a healthy donor (ideally, the patient’s spouse or “significant other”) into the patient’s colon to restore a healthy population of bacteria.1,2 The rationale behind this procedure is simple: antibiotics and other factors disrupt the normal balance of the colonic flora, allowing C difficile to proliferate, but the imbalance can be corrected by reintroducing the normal flora.1

In this article, we will review how recurrent C difficile infection occurs and the importance of the gut microbiota in resisting colonization with this pathogen. We will also describe the protocol used for fecal microbiota transplantation.

■ C DIFFICILE INFECTION OFTEN RECURS

C difficile is the most common cause of hospital-acquired diarrhea and an important cause of morbidity and death in hospitalized patients.3,4 The cost of this infection is estimated to be more than $1.1 billion per year and its incidence is rising, partly because of the emergence of more-virulent strains that make treatment of recurrent infection more difficult.5,6

C difficile infection is characterized by diarrhea associated with findings suggestive of pseudomembranous colitis or, in fulminant cases, ileus or megacolon.7 Recurrent C difficile
infection is defined as the return of symptoms within 8 weeks after successful treatment.\(^7\)

\textit{C. difficile} produces two types of toxins. Toxin A is an enterotoxin, causing increased intestinal permeability and fluid secretion, while toxin B is a cytotoxin, causing intense colonic inflammation. People who have a poor host immune response to these toxins tend to develop more diarrhea and colonic inflammation.\(^8\)

A more virulent strain of \textit{C. difficile} has emerged. Known as BI/NAP1/027, this strain is resistant to quinolones, and it also produces a binary toxin that has a partial gene deletion that allows for increased production of toxins A and B in vitro.\(^9,10\) More cases of severe and recurrent \textit{C. difficile} infection have been associated with the increasing number of people infected with this hypervirulent strain.\(^9,10\)

\textit{C. difficile} infection recurs in about 20\% to 30\% of cases after antibiotic treatment for it, usually within 30 days, and the risk of a subsequent episode doubles after two or more occurrences.\(^10,11\) Metronidazole (Flagyl) and vancomycin are the primary treatments; alternative treatments include fidaxomicin (Dificid),\(^10\) rifaximin (Xifaxan),\(^12\) nitazoxanide,\(^13\) and tolevamer (a novel polymer that binds \textit{C. difficile} toxins).\(^14\)

\textbf{TABLE 1} summarizes the treatment regimen for \textit{C. difficile} infection in adults, based on clinical practice guidelines from the US Centers for Disease Control and Prevention (CDC).\(^7\)

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{CLINICAL DEFINITION} & \textbf{SUPPORTIVE CLINICAL DATA} & \textbf{RECOMMENDED TREATMENT} \\
\hline
\textbf{Initial episode, mild or moderate} & White blood cell (WBC) count \leq 15,000 cells/mL & Metronidazole 500 mg three times per day by mouth for 10–14 days \\
\hline
\textbf{Initial episode, severe} & WBC count \geq 15,000 cells/mL \\
 & Serum creatinine \geq 1.5 times baseline & Vancomycin 125 mg four times per day by mouth for 10–14 days \\
\hline
\textbf{Initial episode, severe, complicated, or fulminant} & Severe \textit{C. difficile} infection complicated with hypotension, shock, ileus, or megacolon & Vancomycin 500 mg four times per day by mouth or nasogastric tube, plus metronidazole 500 mg every 8 hours intravenously \\
 & & If complete ileus, consider adding rectal instillation of vancomycin \\
\hline
\textbf{First recurrence} & & Same as for initial episode \\
\hline
\textbf{Second recurrence} & & Vancomycin in a tapered and/or pulsed regimen \\
\hline
\end{tabular}
\caption{CDC practice guidelines for treating \textit{Clostridium difficile} infection}
\end{table}

Immediately after birth, the sterile human gut becomes colonized by a diverse community of microorganisms.\(^15\) This gut microbiota performs various functions, such as synthesizing vitamin K and vitamin B complex, helping digest food, maintaining the mucosal integrity of the gut, and priming the mucosal immune response to maintain homeostasis of commensal microbiota.\(^16\)

However, the most important role of the gut microbiota is “colonization resistance” or preventing exogenous or potentially pathogenic organisms from establishing a colony within the gut.\(^17\) It involves competition for nutrients and occupation of binding sites on the gut epithelium by indigenous flora.\(^16\) Other factors such as the mucosal barrier, salivation,
Treating recurrent *Clostridium difficile* infection by restoring healthy intestinal flora

The normal healthy gut teems with bacteria, but most of them are benign or even beneficial in ways we are only beginning to appreciate, eg, keeping out opportunistic pathogens such as *Clostridium difficile*.

Antibiotic therapy for *C. difficile* infection suppresses active infection, but the organism can form resistant spores. In addition, antibiotics further disrupt the normal intestinal flora. As a result, *C. difficile* infection often recurs.

Antibiotic therapy disrupts the normal population of bacteria, paradoxically allowing colonization by *C. difficile*.

Fecal microbiota transplantation involves instilling fecal material from a healthy donor to restore the normal intestinal flora.

FIGURE 1

Medical Illustrator: Beth Halasz

©2013 CCF
swallowing, gastric acidity, desquamation of mucosal membrane cells, intestinal motility, and secretion of antibodies also play major roles in colonization resistance.17

- **ANTIBIOTICS DISRUPT THE GUT FLORA**

Physical or chemical injuries (the latter by antimicrobial or antineoplastic agents, eg) may disrupt the gut microbiota. In this situation, opportunistic pathogens such as *C difficile* colonize the gut mucosa, stimulate an immune reaction, and release toxins that cause diarrhea and inflammation.18 *C difficile* will try to compete for nutrients and adhesion sites until it dominates the intestinal tract.

When *C difficile* spores are ingested, they replicate in the gut and eventually release toxins. Antibiotic therapy may eliminate *C difficile* bacteria but not the spores; hence, *C difficile* infection can recur after the antibiotic is discontinued unless the indigenous bacteria can restrain *C difficile* from spreading.19

- **HOW DOES FECAL MICROBIOTA TRANSPLANTATION WORK?**

Fecal microbiota transplantation involves instilling processed stool that contains essential intestinal bacteria (eg, *Bacteroides* species) from a healthy screened donor into the diseased gastrointestinal tract of a suitable recipient (Figure 1).1

The aim of this procedure is to reestablish the normal composition of the gut flora, restore balance in metabolism, and stimulate both the acquired and the humoral immune responses in the intestinal mucosa after disruption of the normal flora.20-23 One study showed that patients who have recurrent *C difficile* infections have fewer protective microorganisms (ie, *Firmicutes* and *Bacteriodetes*) in their gut, but after fecal microbiota transplantation their microbiota was found to be similar to that of the donor, and their symptoms promptly resolved.18

- **STUDIES UP TO NOW**

The principle of transplanting donor stool to treat various gastrointestinal diseases has been practiced in veterinary medicine for decades in a process known as transfaunation.24 Fecal microbiota transplantation was first performed in humans in the late 1950s in patients with fulminant pseudomembranous colitis that did not respond to standard antibiotic therapy for *C difficile* infection.25 Since then, a number of case reports and case series have described instillation of donor stool via nasogastric tube,26 via colonoscope,27-31 and via enema.32 Regardless of the protocols used, disease resolution has been shown in 92% of cases and few adverse effects have been reported, even though transmission of infectious pathogens is theoretically possible.33

A recent multicenter long-term follow-up study34 showed that diarrhea resolved within 90 days after fecal microbiota transplantation in 70 (91%) of 77 patients, while resolution of *C difficile* infection after a further course of antibiotics with or without repeating fecal microbiota transplantation was seen in 76 (98%) of 77 patients.34 Some patients were reported to have improvement of preexisting allergies, and a few patients developed peripheral neuropathy and autoimmune diseases such as Sjögren syndrome, idiopathic thrombocytopenic purpura, and rheumatoid arthritis.33

As the important role of the gut microbiota in resisting colonization by *C difficile* is becoming more recognized, scientists are beginning to understand and explore the additional potential benefits of fecal microbiota transplantation on other microbiota-related dysfunctions.2 The Human Microbiome Project is focusing on characterizing and understanding the role of the microbial components of the human genetic and metabolic landscape in relation to human health and disease.35 Earlier observational studies showed fecal microbiota transplantation to be beneficial in inflammatory bowel disease,36,37 irritable bowel syndrome,38,39 multiple sclerosis,40 rheumatologic40 and autoimmune diseases,41 and metabolic syndrome,42 likely owing to the role of the microbiota in immunity and energy metabolism. Although these reports may provide insight into the unexplored possibilities of fecal microbiota transplantation, further clinical investigations with randomized controlled trials are still necessary.
As yet, there is no standardized protocol for fecal microbiota transplantation, since no completed randomized trial supporting its efficacy and safety has been published. However, a group of experts in infectious disease and gastroenterology have published a formal standard practice guideline, as summarized below.

Primary indications for fecal microbiota transplantation
- Recurrent *C difficile* infection—at least three episodes of mild to moderate *C difficile* infection and failure of a 6- to 8-week taper with vancomycin with or without an alternative antibiotic such as rifaximin or nitazoxanide, or at least two episodes of severe *C difficile* infection resulting in hospitalization and associated with significant morbidity.
- Mild to moderate *C difficile* infection not responding to standard therapy for at least 1 week.
- Severe or fulminant *C difficile* colitis that has not responded to standard therapy after 48 hours.

Who is a likely donor?
The gut microbiota is continuously replenished with bacteria from the environment in which we live, and we constantly acquire organisms from people who live in that same environment. Hence, the preferred donor is someone who has intimate physical contact with the recipient. The preferred stool donor (in order of preference) is a spouse or significant partner, a family household member, or any other healthy donor.

Who should not be a donor?
It is the responsibility of the physician performing the fecal microbiota transplantation to make sure that the possibility of transmitting disease to the recipient is minimized. Extensive history-taking and physical examination must never be omitted, since not all diseases or conditions can be detected by laboratory screening alone, especially if testing was done during the early stage or window period of a given disease. Nevertheless, the donor’s blood and stool should be screened for transmissible diseases such as human immunodeficiency virus (HIV), hepatitis, syphilis, enteric bacteria, parasites, and *C difficile*.

The recipient has the option to be tested for transmissible diseases such as HIV and hepatitis in order to avoid future questions about transmission after fecal microbiota transplantation. A positive screening test must always

TABLE 2

Exclusion criteria for donors

ABSOLUTE

- **Risk of infectious agent**
 - Known human immunodeficiency virus (HIV), hepatitis B, or hepatitis C infection
 - Known exposure to HIV or viral hepatitis within the previous 12 months
 - High-risk sexual behaviors
 - Use of illicit drugs
 - Tattoo or body piercing within 6 months
 - Incarceration or history of incarceration
 - Known current communicable disease (e.g., upper respiratory tract infection)
 - Risk factors for variant Creutzfeldt–Jakob disease
 - Travel within the last 6 months to areas where diarrheal illnesses are endemic

- **Gastrointestinal comorbidities**
 - History of inflammatory bowel disease
 - History of irritable bowel syndrome, idiopathic chronic constipation, or chronic diarrhea
 - History of gastrointestinal malignancy or known polyposis

- **Factors that can or do affect the composition of the intestinal microbiota**
 - Antibiotics within the preceding 3 months
 - Major immunosuppressive medications
 - Systemic antineoplastic agents

- **Additional recipient-specific considerations**
 - Recent ingestion of a substance (e.g., nuts) to which the recipient is allergic

RELATIVE

- **History of major gastrointestinal surgery (e.g., gastric bypass)**
- **Metabolic syndrome**
- **Systemic autoimmunity, e.g., multiple sclerosis, connective tissue disease**
- **Atopic diseases including asthma and eczema, eosinophilic disorders of the gastrointestinal tract**
- **Chronic pain syndromes, e.g., chronic fatigue syndrome, fibromyalgia**

TABLE 3

Instructions for fecal microbiota transplantation

Donor
Avoid intake of substances that may cause allergies to recipient
Report any signs and symptoms of infection
Take an osmotic laxative (milk of magnesia, lactulose) the night before transplantation

Recipient
Stop oral vancomycin and metronidazole 3 days before transplantation
Take omeprazole 20 mg on the evening before and the morning of transplantation
Transplantation of stool suspension may not reach distal areas of the colon, especially in patients with ileus and small-bowel obstruction. There is also a higher risk of bacterial overgrowth in elderly patients who have lower gastric acid levels.33

Preprocedure instructions and stool preparation
The physician should orient both the donor and recipient regarding “do’s and don’ts” before fecal microbiota transplantation.

Route of administration
The route of administration may vary depending on the clinical situation. Upper-gastrointestinal administration is performed via nasogastric or nasojejunal tube or gastroscopy. Lower-gastrointestinal administration is performed via colonoscopy (the route of choice) or retention enema.

The upper-gastrointestinal route (nasogastric tube, jejunal catheter, or gastroscopy). The nasogastric or nasojejunal tube or gastroscopy is inserted into the upper-gastrointestinal tract, and positioning is confirmed by radiography. From 25 to 50 mL of stool suspension is drawn up in a syringe and instilled into the tubing followed by flushing with 25 mL of normal saline.26 Immediately after instillation, the tube is removed and the patient is allowed to go home and continue with his or her usual diet.

This approach is easier to perform, costs less, and poses lower risk of intestinal perforation than the colonoscopic approach. Disadvantages include the possibility that stool suspension may not reach distal areas of the colon, especially in patients with ileus and small-bowel obstruction. There is also a higher risk of bacterial overgrowth in elderly patients who have lower gastric acid levels.33

The lower-gastrointestinal route (colonoscopy, retention enema). Colonoscopy is currently considered the first-line approach for fecal microbiota transplantation.45 After giving informed consent, the patient undergoes standard colonoscopy under sedation. An initial colonoscopic examination is performed, and biopsy specimens are obtained if necessary. Approximately 20 mL of stool suspension is drawn up in a syringe and injected via the biopsy channel of the colonoscope every 5 to 10 cm as the scope is withdrawn, for a total volume of 250 to 500 mL.19,27 The patient should be advised to refrain from defecating for 30 to 45 minutes after fecal microbiota transplantation.46

This approach allows direct visualization of the entire colon, allowing installation of stool suspension in certain areas where C difficile may predominate or hide (eg, in diverticuli).37,47 One disadvantage to this route of administration is the risk of colon perforation, especially if the patient has toxic colitis.

Instillation via retention enema may be done at home with a standard enema kit.32 Disadvantages include the need for multiple instillations over 3 to 5 days,36 back-leakage of stool suspension causing discomfort to patients, and stool suspension reaching only to the splenic flexure.48

TABLE 2 summarizes the exclusion criteria and screening tests performed for donors according to the practice guidelines for fecal microbiota transplantation formulated by Bakken et al.19

TABLE 3 summarizes the preprocedure instructions and steps for stool preparation.

TABLE 3

Instructions for fecal microbiota transplantation

Donor
Avoid intake of substances that may cause allergies to recipient
Report any signs and symptoms of infection
Take an osmotic laxative (milk of magnesia, lactulose) the night before transplantation

Recipient
Stop oral vancomycin and metronidazole 3 days before transplantation
Take omeprazole 20 mg on the evening before and the morning of transplantation

Preprocedure instructions and stool preparation
The physician should orient both the donor and recipient regarding “do's and don'ts” before fecal microbiota transplantation.

Route of administration
The route of administration may vary depending on the clinical situation. Upper-gastrointestinal administration is performed via nasogastric or nasojejunal tube or gastroscopy. Lower-gastrointestinal administration is performed via colonoscopy (the route of choice) or retention enema.
Fecal microbiota transplantation is considered successful if symptoms resolve and there is no relapse within 8 weeks. Testing for *Clostridium difficile* without necessarily developing disease. There is currently no consensus on treatment recommendations for patients who do not respond to fecal microbiota transplantation, although some reports showed resolution of diarrhea after a repeat 2-week standard course of oral vancomycin or repeated instillation of feces collected from new donors.

IS IT READY FOR PRIME TIME?

Fecal microbiota transplantation has been used primarily as an alternative treatment for recurrent *Clostridium difficile* infection, although other indications for its use are currently being identified and studied. This procedure is now being done in several specialized centers in the United States and abroad, and although the protocol may vary by institution, the clinical outcomes have been consistently promising.

The Fecal Therapy to Eliminate Associated Long-standing Diarrhea (FECAL) trial, currently underway, is the first randomized trial to assess the efficacy of fecal microa biota transplantation for treatment of recurrent *Clostridium difficile* infection. Clinical trials such as this one should satisfy our doubts about the efficacy of fecal microbiota transplantation and hopefully pave the way for its application in the near future.

An increasing number of patients are learning to overcome the “yuck factor” associated with fecal microbiota transplantation once they understand its safety and benefits. Moreover, the Human Microbiome Project is attempting to identify specific organisms in stool that may specifically treat *Clostridium difficile* infection, hence eliminating the need for whole-stool transplantation in the near future. Although fecal microbiota transplantation is still in its infancy, its low cost, safety, and effectiveness in treating recurrent *Clostridium difficile* infection will likely lead to the procedure becoming widely adopted in mainstream clinical practice.

REFERENCES

ADDRESS: Markus D. Agito, MD, Akron General Medical Center, 400 Wabash Avenue, Akron, OH 44307; e-mail mdagito@yahoo.com.