Reproductive health and the environment: Counseling patients about risks

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are associated with reproductive complications such as infertility, pregnancy complications, poor birth outcomes, and child developmental abnormalities, although not all chemicals of concern are EDCs. Pregnant patients and women of childbearing age need reasonable advice about environmental contaminants and reproductive health.

KEY POINTS

Although EDCs primarily affect sex steroid hormone pathways, some can affect adrenal, thyroid, and other endocrine pathways.

Human-produced EDCs vary widely in their properties. Many, but not all, concentrate in fat, and some have a very long half-life.

Because it would be impossible to perform randomized, controlled trials of the health effects of the thousands of manufactured EDCs encountered in daily life, physicians should follow the precautionary principal when counseling patients: ie, tell them to avoid chemicals when possible, especially those that have proven or plausible health risks.

On the other hand, physicians need to keep in mind the economic hardships patients may face in switching to potentially safer products or foods and unavoidable exposures at work and at home.

A 28-YEAR-OLD WOMAN presents for routine follow-up of asthma. She has a 1-year-old son and is considering a second pregnancy. She says she read on the Internet that the US Food and Drug Administration recently banned baby bottles and “sippy” cups that contain bisphenol A (BPA), as recommended by the American Medical Association. She wonders if there are other sources of BPA and if they pose a health risk to her, her son, and possible future children.

Environmental toxins have been linked to pregnancy complications and poor birth outcomes. The past several decades have seen a significant rise in reproductive disorders such as early onset of puberty, low sperm count, and birth defects such as cryptorchidism and hypospadias.1–4 These changes may be partly explained by other trends over time, such as older maternal age, rising incidence of obesity and maternal diabetes, and demographic changes that exacerbate health disparities. However, these well-recognized factors explain only some of the wide range of reproductive health problems that have been identified.

This review focuses on emerging evidence of the adverse reproductive effects of human-produced endocrine-disrupting chemicals (EDCs).

ENDOCRINE-DISRUPTING CHEMICALS ARE UBQUITOUS

EDCs are exogenous substances that alter normal functioning of the endocrine system and consequently have the potential to cause adverse health effects in an intact organism and its progeny.2,3,5 Substances classified as EDCs are divided into two groups:
CHEMICALS AND REPRODUCTIVE HEALTH

TABLE 1
Information for patients: Tips for avoiding endocrine-disrupting chemicals

Endocrine-disrupting chemicals may affect how hormones work in our bodies. They are found throughout the environment, and cannot be completely avoided.

To reduce bisphenol A (BPA) exposure for infants
Breastfeed infants for at least 12 months when possible for overall health. If breastfeeding is not an option, it is important to use the formula recommended by your healthcare provider. But be aware of the following:
Liquid formula in cans contains BPA. A government study showed that powdered formula mix did not contain measurable amounts of BPA.
Use BPA-free containers to prepare infant formula.
As of 2009, the six major makers of infant bottles and feeding cups have not used BPA when manufacturing for the US market. Avoid older bottles and cups if possible.
BPA is found in many items made of plastic, including baby toys. Look for “BPA-free,” although this is not a guarantee, since in some cases BPA has been replaced by similar chemicals. Some but not all plastics marked with recycle code 7 may be made with BPA.
Do not heat foods in containers made with BPA. Hot or boiling liquids can transfer traces of BPA. When possible, avoid microwaving foods in plastic containers.
Liners of canned food containers are made with BPA. Rinse canned food well, and substitute fresh foods or food in other types of containers when possible.
Do not use cracked or scratched plastics to prepare or contain liquids or solid food. Cracked or scratched plastics that contain BPA are more likely to transfer BPA to liquids and foods.

To minimize pesticide exposure at home
Reduce or eliminate pests through cleaning, home repair, and trapping. Avoid chemical pesticides.

Eating fruits and vegetables is important for health
It is more important for health to eat fruits and vegetables than to avoid pesticides by not eating any. To minimize pesticide exposure:
Buy organic for foods with the highest levels of pesticides when grown nonorganically. These include apples, celery, bell peppers, peaches, strawberries, imported nectarines, grapes, spinach, lettuce, cucumbers, domestic blueberries, and potatoes.
Eat foods that are low in pesticides when conventionally grown, including onions, sweet corn, pineapples, avocado, cabbage, sweet peas, asparagus, mangoes, eggplant, kiwi, domestic cantaloupe, sweet potatoes, grapefruit, watermelon, and mushrooms.

Avoid phthalates
Phthalates are found in many personal-care products. Diethyl phthalate, dimethyl phthalate, and dibutyl phthalate are commonly used in deodorants, fragrances, hair sprays, hand and body lotions, and nail polish. Unfortunately, not all products that contain them may list them as an ingredient on the label. Read the label and avoid products containing phthalates. Look for “phthalate-free.”
Plastics with recycle code 3 may contain phthalates.

Avoid flame-retardant chemicals
Fire retardants are often used in polyurethane foam found in items such as couches, upholstered chairs, futons, car seats, crib mattresses, and nap pads.
Endocrine disruption is linked to compounds such as tris (1,3-dichloro-2-propyl) phosphate (TDCPP, also known as chlorinated tris and Firemaster) found in household products, including furniture, appliances, electronics, and baby products.
Reproductive difficulties and developmental delays are linked to some flame retardants.
Older foam products (ie, made before 2005) may be more hazardous.
Buy products without flame retardants.

Based on information in references 24–26.

Human-produced compounds, such as pesticides, industrial solvents and lubricants, plastics (eg, BPA), and plasticizers (eg, phthalates)
Phytoestrogens, which are naturally occurring plant compounds that bind to estrogen receptors. The major dietary source of phytoestrogens is soy.
Many human-produced EDCs are lipid-soluble. Some bioconcentrate in fat. The dietary route of exposure is the most common, primarily from fat-containing foods such as meats and seafood. Common predatory fish such as tuna and swordfish, as well as other large fish, are more likely to have high levels of EDCs accumulated from contaminated water. Water, air, soil, and dust in communities, schools, and workplaces may also carry EDCs.
Some human-produced EDCs have a very long half-life and can remain in the environment for years or even decades. Because of their long half-life, some EDCs can “travel” and become part of the food chain, even in “pristine” areas where manufactured substances are not normally found.²

Women of childbearing age and pregnant women come in contact with EDCs on a daily basis. According to the Fourth National Report on Human Exposure to Environmental Chemicals, conducted by the US Centers for Disease Control and Prevention (CDC) in 2009, nearly all pregnant women in the United States have detectable serum levels of EDCs, including BPA, perchlorates, phthalates, polybrominated diphenyl ethers, and pesticides.⁹ Furthermore, BPA was found in more than 90% of the urine samples tested from random subsamples of 2,500 participants in the 2009 National Health and Nutrition Examination Survey report.¹⁰

EDCs AFFECT MULTIPLE PATHWAYS

Laboratory and animal research suggests that both manufactured and naturally occurring EDCs primarily affect sex steroid hormone pathways. However, some EDCs can affect adrenal, thyroid, and other endocrine pathways.

EDCs can potentially alter normal endocrine functioning by several mechanisms. They can bind to nuclear hormone receptors such as estrogen receptors, androgen receptors, progesterone receptors, thyroid hormone receptors, and peroxisome proliferator-activated receptor gamma. They can also bind to nonnuclear steroid hormone receptors (membrane estrogen receptors), nonsteroid receptors such as those for dopamine, serotonin, and norepinephrine, and orphan receptors such as aryl hydrocarbon receptor. In addition, some affect enzymatic pathways involved in steroid biosynthesis and metabolism and disrupt centralized endocrine pathways through positive and negative feedback.² There is also evidence that EDCs have epigenetic and transgenerational effects, as they seem to be able to influence DNA methylation and histone acetylation.¹¹

EVIDENCE OF HARM, LIMITATIONS OF EVIDENCE

In 2009, the Endocrine Society found convincing evidence that EDCs affect the male and female reproductive systems, breast health, oncogenesis, neuroendocrine function, thyroid function, metabolism, and cardiovascular health.² The first evidence of harm from EDCs came from long-term follow-up of randomized trials of diethylstilbestrol, a synthetic estrogen used as a pharmacologic agent between 1938 and 1971 to prevent miscarriage.¹²

In 2013, the American College of Obstetricians and Gynecologists and the American Society for Reproductive Medicine issued a joint opinion report on exposure to toxic environmental agents. The report acknowledged that environmental toxins are ubiquitous and that they can negatively affect health from preconception through adult life. “[We] join leading scientists and other clinical practitioners in calling for timely action to identify and reduce exposure to toxic environmental agents while addressing the consequences of such exposure.”¹³

Because the effects of endocrine disruption can occur during fetal and embryonic development, EDC exposure before and during pregnancy is of special concern.¹⁴ Long-term effects of exposure to hazardous chemicals such as cadmium, lead, and mercury in breast milk can lead to negative consequences in adulthood.¹⁵,¹⁶

Animal studies have pointed to the negative health effects of human-produced EDCs. For example, animals exposed to BPA have aberrant breast and genitourinary development and exhibit abnormal endometrial stimulation and early puberty.²

Despite these suggestive findings, the health effects of environmental toxins on humans are difficult to determine definitively. Evidence comes mainly from epidemiologic studies showing distribution of particular medical conditions based on different levels of exposure. More research is needed on human exposure to environmental toxicants and their effects.²,¹⁷,¹⁸ The National Children’s Study, a cohort collaborative study being conducted by the Environmental Protection Agency, CDC,
and National Institutes of Health, is examining the effects of environmental exposures on more than 100,000 children across the United States, following them from before birth until age 21.19

THE PRECAUTIONARY PRINCIPLE

The precautionary principle is a fairly new concept in environmental science, although clinicians have been adhering to it for a long time. As proposed in a meeting of scientists, lawyers, policy makers, and environmentalists in 1998, “When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically.”20

For example, studies show that breast milk in the United States commonly contains many chemicals that do not meet US Food and Drug Administration standards for baby food.15,16 Although medical ethics prohibits randomized clinical trials in humans to examine the potential harms of these chemicals, proponents of the precautionary principle advocate that it is reasonable to be concerned that these chemicals may be harmful.21-23

TABLE 2

Resources on reproductive health and the environment

Information from professional associations, academic institutions, community organizations, and government agencies

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Pediatric Association</td>
<td>Research articles</td>
</tr>
<tr>
<td>American Society for Reproductive Medicine</td>
<td>Environment and reproduction special interest group membership information, Research articles, Smoking and infertility</td>
</tr>
<tr>
<td>Asian Communities for Reproductive Justice</td>
<td>Safer products and working conditions, specifically in nail salons</td>
</tr>
<tr>
<td>Association of Reproductive Health Professionals</td>
<td>Clinical publications, Continuing medical education, Research</td>
</tr>
<tr>
<td>California Healthy Nail Salon Collaborative</td>
<td>Improving the health and safety of workers and customers in nail salons</td>
</tr>
<tr>
<td>California Teratogen Information Service</td>
<td>Pregnancy risk information, Environmental exposures and reproductive health</td>
</tr>
<tr>
<td>Center for Science in the Public Interest</td>
<td>Steps to protect pregnant women from harmful bacteria and parasites in food</td>
</tr>
<tr>
<td>Collaborative on Health and the Environment</td>
<td>Chemicals, endocrine disruptors, and reproductive health concerns</td>
</tr>
<tr>
<td>Environmental Working Group</td>
<td>Index of chemicals with associated routes of exposure and health effects</td>
</tr>
<tr>
<td>March of Dimes</td>
<td>Environmental risks and pregnancy, Mercury and reproductive health</td>
</tr>
<tr>
<td>Moms Rising</td>
<td>Pesticides and pregnancy</td>
</tr>
<tr>
<td>National Institute of Environmental Health Science</td>
<td>How endocrine disruptors work and their effects</td>
</tr>
<tr>
<td>US Centers for Disease Control and Prevention</td>
<td>Effects of tobacco, pesticides, and lead on reproductive health and infertility, Diethylstilbestrol update</td>
</tr>
<tr>
<td>US Food and Drug Administration</td>
<td>Advice for parents on bisphenol A</td>
</tr>
<tr>
<td>University of California San Francisco Program on Reproductive Health and the Environment</td>
<td>Publications on reproductive health related to exposures at work, food and chemical exposure, and toxins in everyday living</td>
</tr>
<tr>
<td>Women for a Healthy Environment</td>
<td>Advice on eating habits, exercising, and avoiding certain chemicals for healthier, environmentally safe pregnancies</td>
</tr>
<tr>
<td>Women’s Health and the Environment</td>
<td>Information on avoiding polyvinyl chloride, styrene, and polycarbonate to maintain hormonal health</td>
</tr>
<tr>
<td>Women’s Voices for the Earth</td>
<td>Advice on eating habits, exercising, and avoiding certain chemicals for healthier, environmentally safe pregnancies</td>
</tr>
</tbody>
</table>
Applying the precautionary principle: Recommendations for patients

Without categorizing all chemicals as toxicants, nor all toxicants as worrisome for reproductive health, physicians can provide access to a growing body of information about reasonable strategies to reduce risk.

Educating patients about potential risks of exposure needs to be tempered with an appreciation of the economic and social barriers to avoiding or reducing risks. Often, people do not make conscious decisions about exposure. Rather, they are unknowingly exposed or have no access to safe, equivalent alternatives. Substituting suspected or known harmful products with potentially safer ones can be financially prohibitive. Where a patient lives and works may result in unavoidable exposure to environmental toxins.

Nevertheless, there are simple, economical alternatives that reduce or eliminate exposure to EDCs (Table 1).24–26 These include avoiding plastic and metal containers that are not marked “BPA-free,” eating locally grown fruits and vegetables, controlling pests through frequent cleaning and trapping, and avoiding pesticides.

REFERENCES

27. Betts KS. Exposure to TDCPP appears widespread. Environ Health Perspect 2013; 121:a150.

ADDRESS: Julie Friedman, MPH, Director, Iris Cantor UCLA Women’s Health Education and Research Center, 911 Broxton Avenue, Los Angeles, CA 90024; jafriedman@mednet.ucla.edu