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Introduction: Biostatistics and epidemiology 
lecture series, part 1

P hysicians are inundated with clinical research 
fi ndings that potentially impact patient care. 
Evaluating the strength and clinical applica-
tion of research results requires an under-

standing of the underlying biostatistics and epidemio-
logical principles.

The articles in this supplement are based on a series 
of lectures originally developed for fellows in pulmo-
nary and critical care medicine to provide them with 
the tools to transform a scientifi c or clinical question 
into research projects, and then pursue the answer 
to their question with the appropriate methods. The 
same skills also enable them to appraise the published 
literature in a systematic and rigorous manner.  

Each topic in the series began with a presentation 
and discussion of statistical principles and methods, 
then moved to a practical module using the principles 
to appraise a specifi c publication. Participants in the 
course had an immediate opportunity to try the tech-
niques, both to demonstrate understanding and to 
reinforce the concepts to each learner. The articles 
of this series follow the same outline, providing cli-
nicians of all specialties the basic statistical tools to 
conduct and appraise clinical research, along with a 
sample article for practicing each statistical method 
presented. 

This Cleveland Clinic Journal of Medicine supple-
ment includes 3 lectures from the “Biostatistics and 
Epidemiology Lecture Series.” Dr. Stoller’s presenta-

tion, The Architecture of Clinical Research, describes 
the basic structure of clinical research and the 
nomenclature to understand trial design and sources 
of bias.

Building on those concepts, Dr. Chatburn’s lec-
ture, Basics of Study Design: Practical Considerations, 
outlines the structured approach to develop a formal 
research protocol. How to identify a problem, expand 
the scope of it through a literature review, create a 
hypothesis, design a study, and an introduction to 
basic statistical methods are discussed.

And in Chi-square and Fisher’s Exact Tests, Dr. 
Nowacki introduces the statistical methodology of 
these 2 tests to assess associations between 2 inde-
pendent categorical variables. The sample article 
illustrates step-by-step calculation of both the large 
sample approximation (chi-square) and exact (Fish-
er’s) methodologies providing insight into how these 
tests are conducted.

My hope is that these articles, and future install-
ments based on forthcoming lectures, are helpful to 
physicians both in conducting their own research and 
in evaluating the research of others

Aanchal Kapoor, MD
Critical Care Medicine

Cleveland Clinic
Supplement Editor
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From the “Biostatistics and Epidemiology Lecture Series, Part 1” 

The architecture of clinical research

I am fl attered to present the inaugural talk in the 
biostatistics and clinical research design series on 
the architecture of clinical research. This content 
is based on the teachings of my mentor, Dr. Alvan 

Feinstein, who together with Dr. David Sackett, is 
credited with pioneering clinical epidemiology. Dr. 
Feinstein was a Sterling Professor at the Yale School of 
Medicine. His main opus of work is a book called, Clin-
ical Epidemiology: The Architecture of Clinical Research.1 
This paper is named in credit to Dr. Feinstein’s enor-
mous contribution. I will review some important terms 
defi ned by Dr. Feinstein to provide the background 
necessary for the remainder of the talks in this series.

To start, I will frame this topic by asking the follow-
ing question: Why do we do research? I’ll talk about 
the basic structure of research studies and provide a 
taxonomy, as Dr. Feinstein would say, a nomenclature 
with which to understand trial design and the sources 
of bias in those trials. Then, I will discuss these sources 
of bias in detail using the taxonomy that Dr. Feinstein 
described in his aforementioned book. Finally, I will 
share with you some examples of bias in clinical trials 
to help you better understand these concepts. 

Now, the answer to the basic question posed 
above is: basically, we do cause-and-effect research to 
establish the causality of a risk factor or the effi cacy 
of a therapy. Does cigarette smoking cause lung can-
cer? Does taking hydrochlorothiazide help systemic 
hypertension? Does air pollution worsen asthma? 
Does supplemental oxygen help patients with chronic 
obstructive pulmonary disease (COPD)? 

Cause-and-effect research can be subsumed under 
2 broad issues: causal risk factors and therapeutic 
effi cacy. In his review of early false understandings in 

medicine that were based on anecdotal observation 
alone, Thomas cites many examples—“the undue 
longevity of useless and even harmful drugs can be 
laid at the door of authority,” ie, empiricism, lack of 
rigorous research.2 The fi eld is full of these: yellow 
fever causality, the value of cupping, and even inter-
mittent mandatory ventilation when it was described 
by John Downs in 1973 and touted as a superior mode 
for weaning patients from mechanical ventilation.3 
Twenty-fi ve years later, randomized controlled trials 
by Brochard et al4 indicated not only that intermit-
tent mandatory ventilation was not the best mode 
to wean but was, in fact, the worst mode for weaning 
patients from mechanical ventilation compared with 
either pressure support or spontaneous breathing tri-
als. Many more examples exist to demonstrate the 
false understandings that can be ascribed to lack of 
rigorous study or evidence in medicine. 

Before systematically exploring the sources of bias 
in Feinstein’s construct, let us defi ne some very basic 
terms from his book. Dr. Feinstein talks about the 
baseline state, which refers to the group of patients 
under study who are culled from a larger population to 
whom the results are intended to be applied (Figure 
1).1 This baseline group is hopefully representative of 
this larger target population. As a nod to the later 
discussion, Dr. Feinstein would call bias introduced 
by unusual assembly of the study population from the 
larger intended population as “assembly bias.” So, if 
the group under study is not representative of either 
the patients you see or the world of patients with this 
condition or if there is something special or distinc-

FIGURE 1. Design of a controlled trial according to Feinstein.1
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tively nonrepresentative about the study population, 
then the results may be subject to “assembly bias.” 
Assembly bias can compromise the so-called “exter-
nal” validity of the study—its ability to be applied to 
populations beyond the study group. 

Having assembled a baseline group for study, that 
group is classically allocated to 1 of 2 (or sometimes 
more than 2) compared therapies. In a controlled trial, 
patients can be allocated using a variety of strategies, 
including randomization. Using the paradigm diagram 
(Figure 1, which considers a 2-arm trial), patients are 
allocated to 1 of 2 compared groups—group A and 
group B. Then, in a treatment trial, 1 group receives 
the principal maneuver, which is the drug or inter-
vention under study—for example, supplemental 
oxygen for patients with COPD. The comparative 
maneuver is allocated to group B, which also receives 
all the other treatments (called “co-maneuvers”) 
that are used to treat the condition under study. In 
a trial of supplemental oxygen for COPD evaluating 
lung function and exacerbation frequency as outcome 
measures, such co-maneuvers might include inhaled 
bronchodilators, inhaled corticosteroids, pulmonary 
rehabilitation, and Pneumovax vaccine. Ideally, these 
co-maneuvers are equally distributed between the 
compared groups (A and B). 

So, in summary, we have a comparative maneu-
ver, which is the nonadministration of supplemental 
oxygen in this proposed trial of supplemental oxygen 
in COPD, the principal maneuver—administration 
of oxygen—and all the co-maneuvers that are ide-
ally equally distributed between both groups. This 
balanced distribution of co-maneuvers between the 
compared groups helps to ensure that any differences 
in the study outcome measures (ie, what is counted as 
the main impact of the intervention under study) can 
be solely attributed to the principal maneuver. When 
this condition—that the difference in outcomes can be 
reliably ascribed to the study intervention—is satisfi ed, 
the study is felt to be “internally” valid. As we will see, 
ensuring internal validity requires freedom from the 
many sources of what Dr. Feinstein calls “internal bias.”

Back to basic terms: “cohort” in Dr. Feinstein’s 
language is a group that shares common traits and is 
followed forward in a longitudinal study. The “out-
come measure” is self-evident—it is what is being 
measured, with the “primary outcome” being the pre-
defi ned measure that is considered the most impor-
tant (and ideally most clinically relevant) impact of 
the study intervention. Later in this series of lectures, 
there will be discussions of power calculations and 
the so-called “effect size”—the magnitude of effect 

that the intervention is expected to produce and that 
is ideally deemed clinically important. 

An important consideration in designing a trial 
is to defi ne and declare the primary outcome mea-
sure carefully because defi ning the primary outcome 
measure has important implications for the study. I 
will provide an example from the alpha-1 antitrypsin 
defi ciency literature. Some of you have probably read 
what has been called the RAPID trial.5 RAPID was 
a trial of augmentation therapy vs placebo in patients 
with severe alpha-1 antitrypsin defi ciency. The primary 
outcome measure (which was pre-negotiated with 
the US Food and Drug Administration [FDA]) was 
computer tomography (CT) lung density determined 
at functional residual capacity (FRC) and total lung 
capacity (TLC). The trial failed to achieve statistical 
signifi cance in regard to CT lung density, although the 
study authors argued that CT density measurements 
made at TLC were more reproducible than those made 
at FRC. When the results were analyzed by TLC alone, 
the results were statistically signifi cant, but when they 
were analyzed with FRC and TLC combined, they were 
not. In the end, based on the pre-negotiated primary 
outcome measure of CT density based on both FRC 
and TLC, the FDA rejected the proposal for a label 
change to say that augmentation therapy slowed the 
loss of lung density even though the weight of evidence 
was clearly in its favor. This case exemplifi es just how 
critical the choice of primary outcome measure can be. 

The wash-out period refers to an interval in a subset 
of randomized trials called “crossover trials” in which 
the primary intervention is discontinued and the 
patient returns to his baseline state before the com-
parative maneuver is then implemented (Figure 2).6 

In order to perform a crossover trial, it is important 
that the effects of the initial intervention can “wash 
out” or be fully extinguished. So, for example, in trials 
of radiation therapy vs surgery, it is impossible to do 
a crossover trial because the effects of radiation can 
never completely wash out nor can those of surgery, 
which are similarly permanent. For example, we can-
not replace the colon once it is resected for cancer 
or replace the appendix once removed. Therefore, 
producing a wash-out requires some very specifi c phar-
macokinetic and pharmacodynamic features in order 
for a crossover trial to be considered. Later talks in this 
series will discuss the enhanced statistical power of a 
crossover trial, where one is comparing every patient 
to him or herself rather than to another patient. 

So, there is always an appetite to do a crossover 
trial as long as the criteria for wash-out can be met, 
namely again that the primary intervention can dis-
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sipate completely to the baseline state before the 
alternative intervention is implemented. 

“Placebo” is a fairly self-evident and well-under-
stood term; placebo refers to the administration of a 
maneuver in a way that is identical to the principal 
maneuver except that the placebo is not expected to 
exert any clinical effect. 

“Blinding” is the unawareness of either the inves-
tigator or of the patient to which the intervention is 
being administered. “Single-blinding” refers to the 
condition in which either the study or the investigator 
(but not both) is unaware, and “double-blinding” refers 
to the condition in which both the subjects and the 
investigators are unaware. There can be some subtle 
issues that compromise whether the patient is aware 
of the intervention that he or she is receiving and that 
can potentially condition the patient’s response, par-
ticularly if there is any subjective component of the 
assessment of the outcome. So, blinding is important. 

With these terms describing the elements of a 
clinical study now described, let us turn to the types 
of studies that comprise clinical research. The fi rst 
group of study types is what Dr. Feinstein called 
descriptive studies—studies that simply describe phe-
nomena without comparison to a control group. As an 
example of a descriptive study, Sehgal et al7 recently 
described the workup of a focal, segmental pneumonia 
in a patient taking pembrolizumab for lung cancer. In 
this paper, there were four other cases of focal pneu-
monia accompanying pembrolizumab use that were 
assembled from the literature, making this descriptive 

paper a so-called case series. A “case series” differs 
from a “single case report,” which reports a single 
patient experience. Though limited in their ability to 
establish cause and effect, case reports and case series 
can help researchers develop proof of principle, so I 
would not discount the value of case reports.8

I can cite a case report from of my own experience 
that demonstrates this point. In 1987, I saw a patient 
from Buffalo who had primary biliary cirrhosis and the 
hepatopulmonary syndrome (HPS). She was so debili-
tated by her HPS that she could not stand up without 
desaturating severely. Although she had normal liver 
synthetic function, she was severely debilitated by her 
HPS and the decision was made to offer her a liver 
transplant, which, at that time, was considered to be 
relatively contraindicated. Much to everyone’s amaze-
ment and satisfaction, her HPS completely resolved 
after the transplant surgery. Her oxygenation and 
alveolar-arterial oxygen gradient normalized, and her 
clubbing resolved. We reported this in a case report, 
which began to affect the way people thought about 
the feasibility of liver transplant for the HPS.8 The les-
son is: do not underestimate the power of a thoughtful 
case report.

The second group of research study types is called 
“cohort studies,” in which one actually compares out-
comes between 2 groups in the study. Cohort studies fall 
into the bucket of either “observational cohort studies,” 
in which allocation to the compared maneuvers is not 
performed by randomization but by any other strategy, 
and “randomized trials.” In observational studies, allo-
cation could occur through physician choice, as when 
the physician prescribes a treatment to 1 group but 
not another, or by patient choice or circumstance. For 
example, an observational cohort study of the risk of 
cigarette smoking would compare outcomes between 
smokers and non-smokers where the patient choses to 
smoke under his/her own volition. Alternatively, the 
circumstances of an exposure could allocate someone 
to the principal maneuver, as when we are studying 
the effect of exposure to World Trade Center dust 
in the fi refi ghters who responded or of exposure to 
nuclear radiation in Hiroshima survivors. These are 
examples of observational cohort studies that compare 
exposed individuals to unexposed individuals, where 
the exposure did not occur by randomization but by 
choice or unfortunate circumstance. 

In contrast to observational studies, allocation in 
randomized trials occurs through a formal process. 
Randomization has the specifi c purpose of attempting 
to ensure that patients are allocated to 2 comparative 
groups from the baseline group with comparable risk 

FIGURE 2. Design of a randomized crossover trial of terbutaline for 
diaphragmatic function. The wash-out period separates the fi rst and 
the second interventions (begins at the star in the diagram).
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Reprinted from Stoller JK, Wiedemann HP, Loke J, Snyder P, Virgulto J, Matthay RA. 
Terbutaline and diaphragm function in chronic obstructive pulmonary disease: a 
double-blind randomized clinical trial. Br J Dis Chest 1988; 82:242–250. © 1988 
with permission from Elsevier. 
http://www.sciencedirect.com/science/journal/00070971
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for developing the outcome measure. When random-
ization is effective, differences in study outcomes can 
be reliably ascribed to the intervention rather than to 
differences in the baseline susceptibility of the com-
pared groups. 

While randomization is an excellent strategy to 
ensure baseline similarity between compared groups, 
randomization can fail, and its effectiveness must 
be checked. Specifi cally, in a randomized trial, it is 
customary to examine the compared groups at base-
line on all features that can affect the likelihood of 
developing the outcome measure. If the groups turn 
out to be dissimilar at baseline in an important way, 
then the study is at risk for bias, which is specifi cally 
called “susceptibility bias” in Feinstein’s construct. 
Obviously, the larger number of baseline clinical and 
demographic features that can condition the likeli-
hood of developing the outcome measure, the more 
diffi cult it is to achieve baseline similarity between 
compared groups and the more important it becomes 
to ensure that randomization has been effective. In 
this circumstance, larger numbers of participants in 
both compared groups are generally needed. More 
about susceptibility bias later. 

There are generally 2 types of randomized trials: 
the so-called “parallel controlled trials” in which 
each group receives either the principal or the com-
parative maneuver and is followed and “crossover tri-
als” in which each compared group receives both the 
principal maneuver and the co-maneuver at different 
times after an effective wash-out period. Wash-out 
was discussed above. Figure 2 shows an example of a 
crossover trial examining the effects of terbutaline on 
diaphragmatic function.6 The investigators adminis-

tered terbutaline for a week, measured transdiaphrag-
matic pressures, gave the patient a terbutaline vaca-
tion (the “wash-out period”), and then crossed over 
those patients who were initially receiving terbuta-
line to placebo and initial placebo recipients to ter-
butaline, having remeasured diaphragmatic function 
after the wash-out period to assure that the patient’s 
diaphragmatic function prior to the second crossover 
was identical to his/her baseline state. If this return to 
baseline is accomplished, then the criteria from effec-
tive wash-out are satisfi ed.

Now, with these basic structural terms of clinical 
research defi ned, bias will occupy the remainder of 
the discussion. By defi nition, bias in a clinical trial is 
any factor in the design or conduct of the trial, either 
external to the trial or internal to the trial, that can 
alter the results in a way that either threatens the 
reliability of attributing the differences in outcomes 
between the compared groups with the principal 
maneuver (“internal validity”) or limits the ability of 
the results, however internally valid, to be applied to 
a specifi c population beyond the study group (“exter-
nal validity”) (Table 1).1 This again is because the 
main goal of cause-and-effect research is to make sure 
that you can attribute differences between the 2 com-
pared groups at the end of the trial to the interven-
tion under study and nothing else. 

As we begin to talk about sources of bias, consider 
a study in which we compare survival of patients 
allocated to surgery vs nonsurgical therapy for lung 
cancer (Figure 3).1 This study is subject to the fi rst 
type of so-called “internal bias” in the Feinsteinian 
construct—so-called “selection bias.” For example, 
all patients treated surgically were considered healthy 
enough by their doctors to undergo surgery, whereas 
patients treated without surgery may have been 
deemed inoperable because of comorbidities, lung 
dysfunction, cardiac dysfunction, and so on. If the 
results of such a comparison show that the mortality 
rate among surgical patients in this study was lower, 
the question then becomes: is the improved survival 
in surgical candidates due to the superior effi cacy of 

TABLE 1
Types of bias in a clinical trial according 
to Feinstein1

Internal bias 
(threatens the reliability of the study results)

Susceptibility bias
Performance bias
Detection bias
Transfer bias

External bias 
(threatens the generalizability of the study results)

Assembly bias

FIGURE 3. A comparison of surgery vs nonsurgical therapy for 
advanced lung cancer. An example of possible susceptibility bias.1
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surgery vs other therapy or was the enhanced survival 
due to the surgical patients being healthier to begin 
with? You can intuitively sense that the answer to this 
question is that the enhanced survival may be due to 
the better health of patients treated surgically rather 
than to the surgery itself because of how the patients 
were selected to receive it. So, this is a simple example 
of what Dr. Feinstein would call “susceptibility bias.” 
Susceptibility bias occurs when the 2 baseline groups 
are not comparably at risk or susceptible to developing 
the outcome measure, leading the naïve investigator 
in this specifi c example to attribute the difference in 
outcomes to the superiority of surgery when in fact it 
may have nothing to do with the surgery vs. the other 
maneuver. When susceptibility bias is in play, the dif-
ference between the outcomes in the compared groups 
could be attributed to the baseline imbalance of the 
groups rather than to the principal maneuver itself.

Turning back to the taxonomy of bias, there are 
four types that can threaten internal validity—
“susceptibility,” “performance,” “detection,” and 
“transfer” bias—and 1 type of bias (called “external 
bias”) that can affect the generalizability of the study 
called “assembly bias” (Table 1).

Figure 4 shows where these various sources of bias 
appear in the architecture of a clinical trial. As just 
discussed, susceptibility bias affects the baseline state 
and the comparability of the groups. Performance bias 
relates to how effective and how comparably the co-
maneuvers are given and whether the primary inter-
vention is potent enough to affect an outcome. Both 
transfer and detection bias operate in detecting the 
outcome, especially regarding the rigor and frequency 
with which they are investigated. Transfer bias has to 
do with selective loss to follow-up of those included 
in the trial. If there is a systematic reason for loss to 
follow-up that is related to the impact of the inter-
vention, then the study is at risk for transfer bias. For 
example, in a randomized trial of drug A vs placebo 

for pneumonia, if drug 
A is effective but all the 
drug A recipients fail to 
follow-up because they 
feel too good to return 
for follow-up, then trans-
fer bias could be causing 
the study to show nonef-
fi cacy even though the 
drug works. So, if those 
who respond favorably 
are systematically lost 
to follow-up, and if all 

the patients who felt lousy wanted to see the doctor 
and came back for follow-up, such transfer bias would 
bias towards noneffi cacy. Specifi cally, only patients 
remaining in the trial would be those who failed to 
respond and that would dilute any difference between 
the 2 groups despite the active effi cacy of drug A. 

Hopefully, you are already beginning to get a sense 
that one has to be extremely disciplined in thinking 
about each of these sources of bias because they can 
have some very subtle nuances in randomized trials 
that can easily escape attention. 

Returning to sources of bias, let’s consider the 
second type of bias, “performance bias.” Performance 
bias relates to the administration of the compared 
maneuvers—the primary or principal maneuver, 
compared with the comparative maneuver. Perfor-
mance bias can occur when the main maneuver is not 
administered adequately or when the co-maneuvers 
are administered in an imbalanced way between the 
compared groups. Consider the example of the Long-
Term Oxygen Treatment Trial (LOTT) trial, which 
compared use of supplemental oxygen with no supple-
mental oxygen in patients with stable COPD and rest-
ing or exercise-induced moderate desaturation.9 The 
principal outcome measure of LOTT was all-cause 
hospitalization or death. In such a study, many poten-
tial sources of performance bias exist. For example, 
performance bias might exist if none of the patients 
allocated to oxygen actually used supplemental oxy-
gen. Alternately, to the extent that use of inhaled cor-
ticosteroids or antimuscarinic agents lessens the risk 
of COPD exacerbation, performance bias could occur 
if use of these co-maneuvers was imbalanced between 
the compared groups. As a specifi c extreme circum-
stance, if all patients in the nonoxygen group used 
these inhalers but none of the patients in the oxygen 
group did, then a lack of difference between exacer-
bation frequency could be related to this imbalance 
in co-maneuvers (a form of performance bias) rather 

FIGURE 4. Potential sources of bias in a randomized, controlled trial according to Feinstein.1
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than to the lack of effi cacy of supplemental oxygen.
“Compliance bias” is a subset of performance bias 

which occurs when 2 conditions are satisfi ed: (1) the 
main maneuver is not administered adequately, and 
(2) the investigator is unaware of that nonreceipt so 
that this cannot be accounted for in interpreting the 
study results. For example, if a drug has effi cacy but 
if no one in the treatment arm of the trial takes the 
drug, the absence of a difference in outcomes between 
the compared groups will be ascribed to noneffi cacy, 
whereas “compliance bias” (ie, no one actually took 
the drug) could actually be the cause. Ideally, ran-
domized studies should be evaluated on an “intention 
to treat” basis irrespective of compliance, but there 
is an analytic approach called “per protocol” analy-
sis in which you can analyze the results according to 
whether the patient actually used the intervention in 
an effective way. “Per protocol” analysis is a secondary 
analysis of the primary results but it can nonetheless 
help determine whether the negative result is likely 
related to noncompliance or not. 

A third type of internal bias, “detection bias,” is 
fairly straightforward. Detection bias is related to how 
avidly and how comparably the outcomes are mea-
sured between the 2 compared groups. Let’s say that 
you are conducting a trial of a new antibiotic and the 
primary outcome is colony counts on petri dishes of 
plated collected specimens. If the technicians who 
read the petri dish counts are unblinded, they may 
look at the colony counts with a biased eye, see-
ing fewer colonies on plates collected from patients 
receiving the antibiotic.

Overall, detection bias occurs when outcomes are 
ascertained or detected unequally between the com-
pared groups, and detection bias can involve any of 
the following: is there comparable surveillance of the 
2 groups for analysis of the outcome measure? Are the 
diagnostic tests comparably performed in both groups 
and is the interpretation comparably unbiased with 
equipoise? Investigators who know which patients are 
receiving an active drug and those who are not could 
experience subliminal bias that renders them more 
likely to fi nd that the drug under study is effi cacious. 

Depending on the principal study maneuver, ensur-
ing blinding can be challenging. To demonstrate this 
point, let’s consider the example of conducting a ran-
domized control trial of Vicks VapoRub. Vicks Vapo-
Rub is an old product that smells like wintergreen and 
that mothers used to rub on the chests of their infants 
in the hope of speeding recovery from colds and bron-
chitis episodes. It was felt that the distinctive smell 
of the product was materially related to wintergreen, 

which gives rise to the odor. So, imagine a randomized 
trial of Vicks VaporRub. A trial is designed in which 
sick children receive Vicks VapoRub on their chest and 
others receive a placebo rub that lacks the distinctive 
wintergreen odor. But, the odor itself is felt to be related 
to how Vicks VapoRub actually works. Thus, it is the 
odor itself that creates the blinding challenge here.

The primary outcomes in this study are the dura-
tion of the child’s cold symptoms, as ascertained by 
pediatricians actually examining the children. So, 
pediatricians would come and listen to the infants’ 
chests: “Yeah, this chest is clear, but this other infant 
is still full of rhonchi,” and they would ascertain the 
outcome measure in this way. So, my blinding ques-
tion to you is: how do you blind a trial of Vicks Vapo-
Rub given the conditions described? Namely, you put 
the VapoRub on the chest, it smells and the smell is 
the intervention—how do you blind such a trial?  

The clever answer is that you should put Vicks 
VapoRub on the upper lips of all the examiners, so 
what they smell is Vicks VapoRub independent of 
whether the child they are examining also has the 
Vicks VapoRub or placebo on their chest. In this 
way, single blinding of the examiners is preserved 
and detection bias is averted. It is important to point 
out that double blinding could also be achieved by 
placing Vicks VapoRub on the child’s upper lip, but 
there is little reason to suspect that the infants being 
studied have a bias related to whether they smell the 
Vicks VapoRub. 

The fourth potential source of internal bias is 
called “transfer bias.” Transfer bias is the selective 
loss to follow-up of patients from 1 of the 2 compared 
groups in the trial for a systematic reason. By sys-
tematic, I mean that that the drop-out is associated 
with the development of the outcome event or some 
impact of the intervention regarding the likelihood 
to develop the outcome event. As an example, if all 
patients respond favorably to a drug and everybody 
fails to follow up because they feel too good to come 
back, then that would bias the study towards nonef-
fi cacy even in the face of an effi cacious intervention. 

Finally, let’s consider a source of bias that can 
affect the “external validity,” or the generalizability 
of the study results to populations other than that 
included in the study itself. Dr. Feinstein calls this 5th 
type of bias “assembly bias” (Table 1).1 Assembly bias 
occurs when the results of the study cannot be reli-
ably applied to populations outside the study itself. 

For example, if I screen patients during a study of 
digoxin for heart rate control in atrial fi brillation, I 
could establish whether the subject was compliant or 
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not by checking his/her serum digoxin levels. Serum 
levels of 0 indicate that the patient has not taken the 
digoxin. If I include a run-in period for the trial—an 
interval before the actual study when I am assessing 
potential subjects’ eligibility to participate—and 
check serum digoxin levels to include only patients 
who are shown to be taking the drug, then I am 
screening for study inclusion on compliance. In this 
way, I will have assembled a population that is highly 
compliant so that I can truly assess whether digoxin 
has effi cacy in controlling the heart rate in patients 
with atrial fi brillation. At the same time, this study 
population is not highly representative of the popula-
tion of patients with atrial fi brillation at large, because 
we know that rates of drug noncompliances may be as 
high as 30% to 40%. So, culling a population with 
run-in periods on demonstrated compliance criteria 
may be very important to assess effi cacy (ie, whether 
the drug works), but this design will trade off on the 
effectiveness of the drug (ie, which asks the ques-
tion “does the drug work in actual practice?”). This 
is because, in the yin-yang between assessing effi cacy 
and assessing effectiveness, the focus on assessing 
effi cacy naturally undermines the ability to assess 
whether the drug works in real-world conditions. 

As another example of potential assembly bias, 
let’s say you are studying an antihypertensive drug 
at a Veterans Administration (VA) hospital, where 
most veterans are men. But you are treating women 
in your practice and wonder whether the drug, which 
works in a predominately male population, will work 
in your female patients. So, there could be assembly 
bias in applying the results of a VA study to a non-VA 
predominantly female population. 

Having now described the design of clinical trials 
and the major sources of bias, let’s apply this think-
ing to the earliest clinical trial. James Lind, a British 
Naval offi cer, was credited with conducting the fi rst 
clinical trial of citrus fruits for scurvy while sailing on 
the ship Salisbury in 1747.2 The question that Lind 
addressed was “does citrus fruit treat and prevent 
scurvy?” In describing this trial, Lind stated “I took 
12 patients with scurvy, these patients were as similar 
as I could have them, had one diet common to all.” 
As you read this through your new Feinsteinian bias 
lens, Lind is addressing 2 potential sources of bias, 
namely, susceptibility bias and performance bias. In 
trying to make the “cases as similar as I could have 
them,” he is trying to avoid susceptibility bias and in 
“providing one diet common to all,” he is trying to 
avoid performance bias.

In terms of the intervention in this trial, these 

12 patients were allocated in pairs to several inter-
ventions: a quart of cider a day, 25 drops of elixir of 
vitriol 3 times a day on an empty stomach, 2 spoons-
ful of vinegar 3 times a day on an empty stomach, 
½ pint a day of sea water, 2 oranges and 1 lemon 
given every day, and a “bigness of nutmeg” 3 times 
per day. In describing the outcome of the trial, Lind 
states “the consequence was that the most sudden 
and visible good effects were perceived from the use 
of oranges and lemons; one of those who had taken 
them, being at the end of 6 days fi t for duty. The spots 
were not indeed at that time quite off his body, nor 
his gums sound, but without any other medicine then 
a gargarism of elixir vitriol, he became quite healthy 
before we came into Plymouth which was on the 16th 
of June. The other was the best recovered of any in 
his condition; and being now deemed pretty well, was 
appointed nurse to the rest of the sick.”

In analyzing this trial, we could characterize it as 
a parallel controlled trial. Whether the allocation 
was done by randomization is not clear, but it was 
certainly an observational cohort study in that there 
were concurrent controls who were treated as simi-
larly as possible except for the principal maneuver, 
which was the administration of citrus fruit. Already 
mentioned was the attention to averting susceptibil-
ity and performance bias. There was no evidence of 
compliance bias as the interventions were enforced, 
nor was there evidence of transfer bias because all 
subjects who were enrolled in the study completed 
the study because they were a captive group on a 
sailing ship. Finally, the likelihood of assembly bias 
seems small, as these sailors seemed to be representa-
tive of victims of scurvy in general, namely in being 
otherwise deprived of access to citrus fruits.

In terms of the statistical results of this study, 
subsequent analysis of the research showed that the 
impact of lemons and oranges was dramatic and 
showed a trend (P = .09) towards statistical signifi -
cance. Notwithstanding the lack of a P < .05, Dr. 
Feinstein would likely say that this study satisfi ed the 
“intra-ocular test” in that the effi cacy of the citrus 
fruit was so dramatic that it “hit you between the 
eyes.” He often argued that the widespread practice of 
prescribing penicillin for pneumococcal pneumonia 
was not based on the results of a convincing random-
ized controlled trial because the effi cacy of penicillin 
in that setting was so dramatic that a randomized trial 
was not necessary (and potentially even unethical if 
the condition of “intra-ocular” effi cacy was satisfi ed).

The fi nal question to address in this lecture is 
whether randomized controlled trials, for all their 
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rigor, always produce more reliable results than obser-
vational studies. This issue has been addressed by 
several authors.10–12 Sacks et al10 contended in 1983 
that observational studies systematically overestimate 
the magnitude of association between exposure and 
outcome and therefore argued that randomized trials 
were more reliable than observational studies. Sub-
sequent analyses tended to challenge this view.11,12 
Specifi cally, Benson and Hartz11 compared the 
results of 136 reports regarding 19 different therapies 
that were studied between 1985 and 1998. In only 
2 of the 19 analyses did the treatment effects in the 
observational studies fall outside the 95% confi dence 
interval for the randomized controlled trial results. 
In this way, these authors argued that observational 
studies generally are concordant with the results of 
randomized trials. They stated that “our fi nding that 
observational studies and randomized controlled 
trials usually produce similar results differs from the 
conclusions of previous authors. The fundamental 
criticism of observational studies is that unrecognized 
confounding factors may distort the results. Accord-
ing to the conventional wisdom, this distortion is 
suffi ciently common and unpredictable that observa-
tional studies are not liable and should not be funded. 
Our results suggested observational studies usually do 
provide valid information.”11

An additional analysis of this issue was performed 
by Concato et al,12 who identifi ed 99 articles regard-
ing 5 clinical topics. Again, the results from random-
ized trials were compared with those of observational 
cohort or case-controlled studies regarding the same 
intervention. The authors reported that “contrary 
to prevailing belief, the average results from well-
designed observational studies did not systemati-
cally overestimate the magnitude of the associations 
between exposure and outcome as compared with 
the results of randomized, controlled trials on the 
same topic. Rather, the summary results of random-
ized, controlled trials and observational studies were 
remarkably similar.”12

On the basis of these studies, it appears that ran-
domized control trials continue to serve as the gold 
standard in clinical research, but we must also recog-
nize that circumstances often preclude the conduct 
of a randomized trial. As an example, consider a ran-
domized trial of whether cigarette smoking is harm-
ful, which, given the strong suspicion of harm, would 
be unethical in that patients cannot be randomized to 
smoke. Similarly, from the example before, a random-
ized trial of penicillin for pneumococcal pneumonia 
would be unethical because denying patients in the 

placebo group access to penicillin would exclude 
them from access to a drug that has “intra-ocular” 
effi cacy. In circumstances like these, well-performed 
observational studies that are attentive to sources of 
bias can likely produce comparably reliable results to 
randomized trials. 

In the end, of course, the interpretation of the study 
results requires the reader’s careful attention to poten-
tial sources of bias that can compromise study valid-
ity. The hope is that with Dr. Feinstein’s framework, 
you can be better equipped to think critically about 
study results that you review and to keenly ascertain 
whether there is any threat to internal or to external 
validity. Similarly, as you go on to design clinical trials 
yourselves, you can pay attention to these potential 
sources of bias that, if present, can compromise the 
reliability of the study conclusions internally or their 
applicability to patients outside of the study.
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From the “Biostatistics and Epidemiology Lecture Series, Part 1” 

Basics of study design: Practical considerations
 ■ INTRODUCTION

Basic research skills are not acquired from medical 
school but from a mentor.1,2 A mentor with experi-
ence in study design and technical writing can make 
a real difference in your career. Most good mentors 
have more ideas for studies than they have time for 
research, so they are willing to share and guide your 
course. Your daily clinical experience provides a 
wealth of ideas in the form of “why do we do it this 
way” or “what is the evidence for” or “how can we 
improve outcomes or cut cost?” Of course, just about 
every study you read in a medical journal has sugges-
tions for further research in the discussion section. 
Finally, keep in mind that the creation of study ideas 
and in particular, hypotheses, is a mysterious process, 
as this quote indicates: “It is not possible, deliberately, 
to create ideas or to control their creation. What we 
can do deliberately is to prepare our minds.” 3 Remem-
ber that chance favors the prepared mind. 

 ■ DEVELOPING THE STUDY IDEA
Often, the most diffi cult task for someone new to 
research is developing a practical study idea. This 
section will explain a detailed process for creating a 
formal research protocol. We will focus on two com-
mon sticking points: (1) fi nding a good idea, and (2) 
developing a good idea into a problem statement.

Novice researchers with little experience, no men-
tors, and short time frames are encouraged not to take 
on a clinical human study as the principle investiga-
tor. Instead, device evaluations are a low-cost, time-
effi cient alternative. Human studies in the form of 
a survey are also possible and are often exempt from 
full Institutional Review Board (IRB) review. Many 

human-like conditions can be simulated, as was done, 
for example, in the study of patient-ventilator syn-
chrony.4,5 And if you have the aptitude, whole studies 
can be based on mathematical models and predictions, 
particularly with the vast array of computer tools now 
available.6,7 And don’t forget studies based on surveys.8

A structured approach 
A formal research protocol is required for any human 
research. However, it is also recommended for all but 
the simplest investigations. Most of the new research-
ers I have mentored take a rather lax approach to 
developing the protocol, and most IRBs are more 
interested in protecting human rights than validat-
ing the study design. As a result, much time is wasted 
and sometimes an entire study has to be abandoned 
due to poor planning. Figure 1 illustrates a structured 
approach that helps to ensure success. It shows a 
3-step, iterative process.

The fi rst step is a process of expanding the scope 
of the project, primarily through literature review. 
Along the way you learn (or invent) appropriate ter-
minology and become familiar with the current state 
of the research art on a broad topic. For example, let’s 
suppose you were interested in the factors that affect 
the duration of mechanical ventilation. The litera-
ture review might include topics such as weaning and 
patient-ventilator synchrony as well as ventilator-
associated pneumonia. During this process, you might 
discover that the topic of synchrony is currently gen-
erating a lot of interest in the literature and generat-
ing a lot of questions or confusion. You then focus on 
expanding your knowledge in this area.

In the second step, you might develop a theoreti-
cal framework for understanding patient-ventilator 
synchrony that could include a mathematical model 
and, perhaps, an idea to include simulation to study 
the problem.

In the third step, you need to narrow the scope of 
the study to a manageable level that includes identi-
fying measurable outcome variables, creating testable 
hypotheses, considering experimental designs, and 
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evaluating the overall feasibility of the study. At this 
point, you may discover that you cannot measure the 
specifi c outcome variables indicated by your theoreti-
cal framework. In that case, you need to create a new 
framework for supporting your research. Alterna-
tively, you may fi nd that it is not possible to conduct 
the study you envision given your resources. In that 
case, it is back to step 1.

Eventually, this process will result in a well-
planned research protocol that is ready for review. 
Keep in mind that many times a protocol needs to be 
refi ned after some initial experiments are conducted. 
For human studies, any changes to the protocol must 
be approved by the IRB.

The problem statement rubric
The most common problem I have seen novices 
struggle with is creating a meaningful problem state-
ment and hypothesis. This is crucial because the 
problem statement sets the stage for the methods, 
the methods yield the results, and the results are 
analyzed in light of the original problem statement 
and hypotheses. To get past any writer’s block, I rec-
ommend that you start by just describing what you 
see happening and why you think it is important. For 
example, you might say, “Patients with acute lung 
injury often seem to be fi ghting the ventilator.” This 
is important because patient-ventilator asynchrony 
may lead to increased sedation levels and prolonged 
intensive care unit stays. Now you can more easily 
envision a specifi c purpose and testable hypothesis. 
For example, you could state that the purpose of this 
study is to determine the baseline rates of different 
kinds of patient-ventilator synchrony problems. The 
hypothesis is that the rate of dyssynchrony is correlated 
with duration of mechanical ventilation.

Here is an actual example of how a problem state-
ment evolved from a vague notion to a testable 
hypothesis.

Original: The purpose of this study is to determine 
whether measures of ineffective cough in patients 
with stroke recently liberated from mechanical ven-
tilation correlate with risk of extubation failure and 
reintubation.

Final: The purpose of this study is to test the 
hypothesis that use of CoughAssist device in the 
immediate post-extubation period by stroke patients 
reduces the rate of extubation failure and pneumonia.

The original statement is a run-on sentence that 
is vague and hard to follow. Once the actual treat-
ment and outcome measures are in focus, then a clear 
hypothesis statement can be made. Notice that the 

hypothesis should be clear enough that the reader 
can anticipate the actual experimental measures and 
procedures to be described in the methods section of 
the protocol.

Here is another example:
Original: The purpose of this study is to evaluate a 

device that allows continuous electronic cuff pressure 
control.

Final: The purpose of this study is to test the 
hypothesis that the Pressure Eyes electronic cuff 
monitor will maintain constant endotracheal tube 
cuff pressures better than manual cuff infl ation during 
mechanical ventilation.

The problem with the original statement is that 
“to evaluate” is vague. The fi nal statement makes 

FIGURE 1. A structured approach for developing a formal research 
protocol.
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the outcome variable explicit and suggests what the 
experimental procedure will be.

This is a fi nal example:
Original: Following cardiac/respiratory arrest, 

many patients are profoundly acidotic. Ventilator set-
tings based on initial arterial blood gases may result 
in inappropriate hyperventilation when follow-up is 
delayed. The purpose of this study is to establish the 
frequency of this occurrence at a large academic insti-
tution and the feasibility of a quality improvement 
project.

Final: The primary purpose of this study is to evalu-
ate the frequency of hyperventilation occurring post-
arrest during the fi rst 24 hours. A secondary purpose 
is to determine if this hyperventilation is associated 
with an initial diagnosis of acidosis.

Note that the original statement follows the rubric 
of telling us what is observed and why it is important. 
However, the actual problem statement derived from 
the observation is vague: what is “this occurrence” 
and is the study really to establish any kind of feasibil-
ity? The purpose is simply to evaluate the frequency 
of hyperventilation and determine if the condition is 
associated with acidosis.

 ■ EXAMPLES OF RESEARCH PROJECTS BY FELLOWS
The following are examples of well-written state-
ments of study purpose from actual studies conducted 
by our fellows.

Device evaluation
Defi ning “Flow Starvation” in volume control 
mechanical ventilation.

•  The purpose of this study is to evaluate the 
relationship between the patient and ventilator 
inspiratory work of breathing to defi ne the term 
“Flow Starvation.”

Auto-positive end expiratory pressure (auto-PEEP) 
during airway pressure release ventilation varies with 
the ventilator model. 

•  The purpose of this study was to compare auto-
PEEP levels, peak expiratory fl ows, and fl ow 
decay profi les among 4 common intensive care 
ventilators.

Patient study
Diaphragmatic electrical activity and extubation out-
comes in newborn infants: an observational study.

•  The purpose of this study is to describe the elec-
trical activity of the diaphragm before, during, 
and after extubation in a mixed-age cohort of 
preterm infants.

Comparison of predicted and measured carbon 

dioxide production for monitoring dead space frac-
tion during mechanical ventilation.

•  The purpose of this pilot study was to compare 
dead space with tidal volume ratios calculated 
from estimated and measured values for carbon 
dioxide production.

Practice evaluation
Incidence of asynchronies during invasive mechani-
cal ventilation in a medical intensive care unit.

•  The purpose of this study is to conduct a pilot 
investigation to determine the baseline inci-
dence of various forms of patient-ventilator 
dyssynchrony during invasive mechanical 
ventilation.

Simulation training results in improved knowledge 
about intubation policies and procedures.

•  The purpose of this study was to develop and 
test a simulation-based rapid-sequence intuba-
tion curriculum for fellows in pulmonary and 
critical care training.

 ■ HOW TO SEARCH THE LITERATURE
After creating a problem statement, the next step in 
planning research is to search the literature. The 10th 
issue of Respiratory Care journal in 2009 was devoted 
to research. Here are the articles in that issue related 
to the literature search:

• How to fi nd the best evidence (search internet)9 
• How to read a scientifi c research paper10 
•  How to read a case report (or teaching case of 

the month)11 
• How to read a review paper.12

I recommend that you read these papers.

Literature search resources
My best advice is to befriend your local librarian.13 

These people seldom get the recognition they deserve 
as experts at fi nding information and even as co-
investigators.14 In addition to personal help, some 
libraries offer training sessions on various useful skills.

PubMed
The Internet resource I use most often is PubMed 
(www.ncbi.nlm.nih.gov/pubmed). It offers free access 
to MEDLINE, which is the National Library of Medi-
cine’s database of citations and abstracts in the fi elds 
of medicine, nursing, dentistry, veterinary medicine, 
health care systems, and preclinical sciences. There 
are links to full-text articles and other resources. The 
website provides a clinical queries search fi lters page 
as well as a special queries page. Using a feature called 
“My NCBI,” you can have automatic e-mailing of 
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search updates and save records and fi lters for search 
results. Access the PubMed Quick Start Guide for 
frequently asked questions and tutorials.

SearchMedica.com
The SearchMedica website (www.searchmedica.co.uk) 
is free and intended for medical professionals. It 
provides answers for clinical questions. Searches 
return articles, abstracts, and recommended medical 
websites.

Synthetic databases
There is a class of websites called synthetic databases, 
which are essentially prefi ltered records for particular 
topics. However, these sites are usually subscription-
based, and the cost is relatively high. You should 
check with your medical library to get access. Their 
advantage is that often they provide the best evidence 
without extensive searches of standard, bibliographic 
databases. Examples include the Cochrane Database of 
Systematic Reviews (www.cochrane.org/evidence), the 
National Guideline Clearinghouse (www.guideline.
gov), and UpToDate (www.uptodate.com). UpTo-
Date claims to be the largest clinical community in 
the world dedicated to synthesized knowledge for 
clinicians and patients. It features the work of more 
than 6,000 expert clinician authors/reviewers on 
more than 10,000 topics in 23 medical specialties. 
The site offers graded recommendations based on the 
best medical evidence.

Portals
Portals are web pages that act as a starting point for 
using the web or web-based services. One popular 
example is ClinicalKey (www.clinicalkey.com/info), 
formerly called MD Consult, which offers books, 
journals, patient education materials, and images. 
Another popular portal is Ovid (ovid.com), offering 
books, journals, evidence-based medicine databases, 
and CINAHL (Cumulative Index to Nursing and 
Allied Health Literature).

Electronic journals
Many medical journals now have online databases of 
current and archived issues. Such sites may require 
membership to access the databases, so again, check 
with your medical library. Popular examples in pulmo-
nary and critical care medicine include the following:

•  American Journal of Respiratory and Critical Care 
Medicine (www.atsjournals.org/journal/ajrccm)

•  The New England Journal of Medicine (www.
nejm.org)

• Chest (journal.publications.chestnet.org)
• Respiratory Care (rc.rcjournal.com)

Electronic books
Amazon.com is a great database search engine for 
books on specifi c topics. It even fi nds out-of-print 
books. And you don’t have to buy the books, because 
now you can rent them. Sometimes, I fi nd what I 
wanted by using the “Look Inside” feature for some 
books. Note that you can look for books at PubMed. 
Just change the search box from PubMed to Books 
on the PubMed home page. Of course, Google also 
has a book search feature. A great (subscription) 
resource for medical and technical books is Safari 
(https://www.safaribooksonline.com). Once again, 
your library may have a subscription.

General Internet resources
You probably already know about Google Scholar 
(scholar.google.com) and Wikipedia.com. Because of 
its open source nature, you should use Wikipedia with 
caution. However, I have found it to be a very good 
fi rst step in fi nding technical information, particularly 
about mathematics, physics, and statistics.

Using reference management software
One of the most important things you can do to make 
your research life easier is to use some sort of reference 
management software. As described in Wikipedia, 
“Reference management software, citation management 
software or personal bibliographic management software is 
software for scholars and authors to use for recording and 
using bibliographic citations (references). Once a citation 
has been recorded, it can be used time and again in gener-
ating bibliographies, such as lists of references in scholarly 
books, articles, and essays.” I was late in adopting this 
technology, but now I am a fi rm believer. Most Inter-
net reference sources offer the ability to download 
citations to your reference management software. 
Downloading automatically places the citation into 
a searchable database on your computer with backup 
to the Internet. In addition, you can get the reference 
manager software to fi nd a PDF version of the manu-
script and store it with the citation on your computer 
(and/or in the Cloud) automatically. 

But the most powerful feature of such software is 
its ability to add or subtract and rearrange the order 
of references in your manuscripts as you are writing, 
using seamless integration with Microsoft Word. The 
references can be automatically formatted using just 
about any journal’s style. This is a great time saver for 
resubmitting manuscripts to different journals. If you 
are still numbering references by hand (God forbid) or 
even using the Insert Endnote feature in Word (defi -
cient when using multiple occurrences of the same 
reference), your life will be much easier if you take the 
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time to start using reference management software.
The most popular commercial software is probably 

EndNote (endnote.com). A really good free software 
system with about the same functionality as Zotero 
(zotero.com). Search for “comparison of reference 
management software” in Wikipedia. You can fi nd 
tutorials on software packages in YouTube.

 ■ STUDY DESIGN
When designing the experiment, note that there are 
many different approaches, each with their advan-

tages and disadvantages. A full treatment of this 
topic is beyond the scope of this article. Suffi ce it 
to say that pre-experimental designs (Figure 2) are 
considered to generate weak evidence. But they are 
quick and easy and might be appropriate for pilot 
studies.

Quasi-experimental designs (Figure 3) generate 
a higher level of evidence. Such a design might be 
appropriate when you are stuck with collecting a con-
venience sample, rather than being able to use a full 
randomized assignment of study subjects.

FIGURE 2. Schematic of pre-experimental research designs.
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FIGURE 3. Schematic of a quasi-experimental research design.
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The fully randomized design (Figure 4) gener-
ates the highest level of evidence. This is because 
if the sample size is large enough, the unknown and 
uncontrollable sources of bias are evenly distributed 
between the study groups.  

 ■ BASIC MEASUREMENT METHODS
If your research involves physical measurements, you 
need to be familiar with the devices considered to be 
the gold standards. In cardiopulmonary research, most 
measurements involve pressure volume, fl ow, and gas 
concentration. You need to know which devices are 
appropriate for static vs dynamic measurements of 
these variables. In addition, you need to understand 
issues related to systematic and random measurement 
errors and how these errors are managed through 
calibration and calibration verifi cation. I recommend 
these two textbooks:

 Principles and Practice of Intensive Care Monitoring 
1st Edition by Martin J. Tobin MD.
•  This book is out of print, but if you can fi nd a 

used copy or one in a library, it describes just 
about every kind of physiologic measurement 
used in clinical medicine.

 Medical Instrumentation: Application and Design 4th 
Edition by John G. Webster.
•  This book is readily available and reasonably 

priced. It is a more technical book describing 
medical instrumentation and measurement 
principles. It is a standard textbook for bio-
metrical engineers.

 ■ STATISTICS FOR THE UNINTERESTED
I know what you are thinking: I hate statistics. Look 
at the book Essential Biostatistics: A Nonmathematical 
Approach.15 It is a short, inexpensive paperback book 

that is easy to read. The author does a great job of 
explaining why we use statistics rather than getting 
bogged down explaining how we calculate them. 
After all, novice researchers usually seek the help of a 
professional statistician to do the heavy lifting. 

My book, Handbook for Health Care Research,16 
covers most of the statistical procedures you will 
encounter in medical research and gives examples 
of how to use a popular tactical software package 
called SigmaPlot. By the way, I strongly suggest that 
you consult a statistician early in your study design 
phase to avoid the disappointment of fi nding out later 
that your results are uninterpretable. For an in-depth 
treatment of the subject, I recommend How to Report 
Statistics in Medicine.17

Statistical bare essentials
To do research or even just to understand published 
research reports, you must have at least a minimal 
skill set. The necessary skills include understanding 
some basic terminology, if only to be able to commu-
nicate with a statistician consultant. Important terms 
include levels of measurement (nominal, ordinal, 
continuous), accuracy, precision, measures of central 
tendency (mean, median, mode), measures of vari-
ability (variance, standard deviation, coeffi cient of 
variation), and percentile. The fi rst step in analyz-
ing your results is usually to represent it graphically. 
That means you should be able to use a spreadsheet to 
make simple graphs (Figure 5).

You should also know the basics of inferential 
statistics (ie, hypothesis testing). For example, you 
need to know the difference between parametric and 
non-parametric tests. You should be able to explain 
correlation and regression and know when to use Chi-
squared vs a Fisher exact test. You should know that 
when comparing two mean values, you typically use 

FIGURE 4. The randomized controlled study design.
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the Student’s t test (and know when to use paired vs 
unpaired versions of the test). When comparing more 
than 2 mean values, you use analysis of variance meth-
ods (ANOVA). You can teach yourself these concepts 
from a book,16 but even an introductory college level 
course on statistics will be immensely helpful. Most 
statistics textbooks provide some sort of map to guide 
your selection of the appropriate statistical test (Fig-
ure 6), and there are good articles in medical journals. 

You can learn a lot simply by reading the Meth-
ods section of research articles. Authors will often 
describe the statistical tests used and why they were 
used. But be aware that a certain percentage of papers 
get published with the wrong statistics.18  

One of the underlying assumptions of most para-
metric statistical methods is that the data may be 
adequately described by a normal or Gaussian distri-
bution. This assumption needs to be verifi ed before 
selecting a statistical test. The common test for data 
normality is the Kolmogorov-Smirnov test. The fol-
lowing text from a methods section describes 2 very 
common procedures—the Student’s t test for com-
paring 2 mean values and the one-way ANOVA for 
comparing more than 2 mean values.19

“Normal distribution of data was verifi ed using the 
Kolmogorov-Smirnov test. Body weights between 
groups were compared using one-way ANOVA for 
repeated measures to investigate temporal differ-
ences. At each time point, all data were analyzed 
using one-way ANOVA to compare PCV and VCV 
groups. Tukey’s post hoc analyses were performed 
when signifi cant time effects were detected within 
groups, and Student’s t test was used to investigate 
differences between groups. Data were analyzed using 
commercial software and values were presented as 
mean ± SD. A P value < .05 was considered statisti-
cally signifi cant.”  

Estimating sample size and power analysis
One very important consideration in any study is the 
required number of study subjects for meaningful sta-
tistical conclusions. In other words, how big should 
the sample size be? Sample size is important because 
it affects the feasibility of the study and the reliability 
of the conclusions in terms of statistical power. The 
necessary sample size depends on 2 basic factors. One 
factor is the variability of the data (often expressed as 
the standard deviation). The other factor is the effect 
size, meaning, for example, how big of a difference 
between mean values you want to detect. In general, 
the bigger the variability and the smaller the differ-
ence, the bigger the sample size required.

As the above equation shows, the effect size is 
expressed, in general, as a mean difference divided by 
a standard deviation. In the fi rst case, the numerator 
represents the difference between the sample mean 
and the assumed population mean. In the denomina-
tor, SD is the standard deviation of the sample (used 
to estimate the standard deviation of the population). 
In the second case, the numerator represents the dif-
ference between the mean values of 2 samples and the 
denominator is the pooled standard deviation of the 
2 samples.

In order to understand the issues involved with 
selecting sample size, we need to fi rst understand the 
types of errors that can be made in any type of deci-
sion. Suppose our research goal is to make a decision 
about whether a new treatment results in a clinical 
difference (improvement). The results of our statisti-
cal test are dichotomous—we decide either yes there 
is a signifi cant difference or no there isn’t. The truth, 

FIGURE 5. Simple graphs that you should be able to make using a spreadsheet program that contains your experimental data.
COPD = chronic obstructive pulmonary disease; PaCOs = partial pressure of carbon dioxide, artery; PS = pressure support; RDS = respiratory distress syndrome; 
SIMV = synchronized intermittent mandatory ventilation
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FIGURE 6. Example fl owchart for selecting the appropriate statistical test.
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which we may never know, is that in reality, the dif-
ference exists or it doesn’t. 

As Figure 7 shows, the result of our decision mak-
ing is that there are 2 ways to be right and 2 ways to 
be wrong. If we decide there is a difference (eg, our 
statistical tests yields P ≤ .05) but in realty there is 
not a difference, then we make what is called a type 
I error. On the other hand, if we conclude that there 
is not a difference (ie, our statistical test yields P > 
.05) but in reality there is a difference that we did not 
detect, then we have made a type II error.

The associated math is shown in Figure 8. The 
probability of making a type I error is called alpha. 
By convention in medicine, we set our rejection 
criterion to alpha = 0.05. In other words, we would 

reject the null hypothesis (that there is no differ-
ence) anytime our statistical test yields a P value less 
than alpha. The probability of making a type II error 
is called beta. For historical reasons, the probability 
of not making a type II error is called the statistical 
power of the test and is equal to 1 minus beta. Power 
is affected by sample size: the larger the sample the 
larger the power. Most researchers, by convention, 
keep the sample size large enough to keep power 
above 0.80.

Figure 9 is a nomogram that brings all these ideas 
together. The red line shows that for your study, given 
the desired effect size (0.8), if you collected samples 
from the 30 patients you planned on then the power 
would be unacceptable at 0.60, indicating a high 
probability of a false negative decision if the P value 
comes out greater than .50. The solution is to increase 
the sample size to about 50 (or more), as indicated by 
the blue line. From this nomogram we can generalize 
to say that when you want to detect a small effect 
with data that have high variability, you need a large 
sample size to provide acceptable power.

The text below is an example of a power analysis 
presented in the methods section of a published study.20 
Note that the authors give their reasoning for the 
sample size they selected. This kind of explanation 
may inform your study design. But what if you don’t 
know the variability of the data you want to collect? 
In that case, you need to collect some pilot data and 
calculate from that an appropriate sample size for a 
subsequent study.

A prospective power calculation indicated that a sample 

FIGURE 7. Types of errors in statistical decision making.
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size of 25 per group was required to achieve 80% power 
based on an effect size of probability of 0.24 that an obser-
vation in the PRVCa group is less than an observation in 
the ASV group using the Mann-Whitney tests, an alpha 
of 0.05 (two-tailed) and a 20% dropout.

 ■ JUDGING FEASIBILITY
Once you have a draft of your study design, includ-
ing the estimated sample size, it is time to judge the 
overall feasibility of the study before committing to it.

Table 1 shows some of the most important factors 
in judging feasibility. The fi rst question is whether the 
outcome will be worth the resources needed to com-
plete the study, implying that you must defi ne costs 
and benefi ts. Second, assure yourself that you can both 
defi ne and measure the outcome variables of interest, 
which can be a challenge in psychological studies and 
even in quality improvement projects. Next consider 
the time constraints, which are affected mainly by the 
sample size and the time needed to observe all the 
individuals in that sample. Naturally, if you are study-
ing a rare disorder, the time needed to collect even a 
modest sample size may make the project impractical.

Every study has associated costs. Those costs and 
the sources of funding must be identifi ed. Don’t forget 
costs for consultants, particularly if you need statisti-
cal consultation.

Finally, consider your level of experience. If you are 
contemplating your fi rst study, a human clinical trial 

might not be the best choice, given the complexity of 
such a project. Studies such as a meta-analysis or math-
ematical simulation require special training beyond 
basic research procedures, and should be avoided.
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TABLE 1
Factors to consider when judging the feasibility of 
a new study

Factor Issues

Signifi cance What is the potential cost/benefi t?
Measurability Can you defi ne and measure outcome 
    variables?
Time contraints How long to obtain needed sample size?
 Are that many subjects really available?
 What are your personal time constraints?
Cost and Will you reimburse subjects?
equipment Will you need to pay constultants/
    study personnel?
 What is the cost of study supplies? 
 Need to rent/purchase equipment?
Experience Do you have the skills to manage the study?
 Can you get help (eg, study coordinators)?
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From the “Biostatistics and Epidemiology Lecture Series, Part 1” 

Chi-square and Fisher’s exact tests

T his article aims to introduce the statistical 
methodology behind chi-square and Fisher’s 
exact tests, which are commonly used in medi-
cal research to assess associations between cat-

egorical variables. This discussion will use data from 
a study by Mrozek1 in patients with acute respiratory 
distress syndrome (ARDS). This was a multicenter, 
prospective, observational study: multicenter because it 
included data from 10 intensive care units, prospective 
because the study collected the data moving forward 
in time, and observational because the study investiga-
tors did not have control over the group assignments 
but rather used the naturally occurring groups. The 
study objective was to characterize focal and nonfocal 
patterns of lung computed tomography (CT)-based 
imaging with plasma markers of lung injury.

The primary grouping variable was type of ARDS 
(focal vs nonfocal) as determined by CT scans and 
other lung imaging tools. In this study, there were 
32 (27%) patients with focal ARDS and 87 (73%) 
patients with nonfocal ARDS. What will be impor-
tant, however, is classifying the type of variables 
because this determines the type of analyses per-
formed. Type of ARDS is a categorical variable with 
2 levels.

The primary study endpoint was plasma levels of 
the soluble form of the receptor for advanced glyca-
tion end product. There were also a number of sec-
ondary study endpoints that can be grouped as either 
patient outcomes or biomarkers. Patient outcomes 
included the duration of mechanical ventilation 
and both 28- and 90-day mortality. Levels of other 
biomarkers included surfactant protein D, soluble 
intercellular adhesion molecule-1, and plasminogen 
activator inhibitor-1. 

This article focused on the secondary outcome of 
90-day mortality beginning at disease onset. Again, 
we are interested in classifying this variable, which is 
categorical with 2 levels (yes vs no). So the scenario 
is that we want to assess the relationship between the 
type of ARDS (focal vs nonfocal) and 90-day mortal-
ity (yes vs no). In its most basic form, this scenario 
is an investigation into the association among 2 cat-
egorical variables. 

When there are 2 categorical variables, the data 
can be arranged in what is called a contingency table 
(Figure 1). Because both variables are binary (2 lev-
els), it is called a 2 × 2 table. However, a contingency 
table can be generated for 2 categorical variables with 
any number of levels—in that case, it is called an r 
× c table, where r is the number of levels for the row 
variable and c is the number of levels for the column 
variable. The actual raw counts or frequencies are 
recorded inside the table cells. The cell counts are 
often referred to as observed counts and thus the nota-
tion (Oij) is used. The subscript i identifi es the specifi c 
level of the row variable, and in this example it can 
equal 1 or 2 since the row variable is binary. Similarly, 
the subscript j identifi es the specifi c level of the col-
umn variable and in this example it can equal 1 or 
2 since the column variable is binary. Therefore, O11 
represents the number of patients who have the row 
variable = level 1 and the column variable = level 1. 

In addition to the row and column variable cells, 
there are also the margin totals. These totals are either 

 Row Column variable
 variable 1 2 

Total

 1 O11 O12 n1+

 2 O21 O22 n2+

 Total n+1 n+2 n

FIGURE 1. Example of a contingency table for 2 categorical variables, 
each with 2 levels (2 × 2 table).
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the row margin total (summing across the row) or the 
column margin total (summing down the column). 
For example, n1+ is the sum of the row where the row 
variable equal 1 (O11 + O12 = n1+). Finally, at the very 
bottom right corner is the grand total, which equals 
the sample size.  

The goal is to test whether or not these 2 cat-
egorical variables are associated with each other. The 
null hypothesis (Ho) is that there is no association 
between these 2 categorical variables and the alterna-
tive hypotheses (Ha) is that there is an association 
between these 2 categorical variables. 

The next step is to translate the generic form of the 
hypotheses into hypotheses that are specifi c to the 
research question. In this case, the null hypothesis is 
that mortality is not associated with lung morphol-
ogy and the alternative hypothesis is that mortality is 
associated with lung morphology. 

The contingency table cells can be populated with 
the numbers found in the article. It has our outcome 
of focus—mortality at day 90—both the count and 
the percent. The results are broken down by type of 
ARDS (focal vs nonfocal) as follows: 

• Focal ARDS = 6 patients (21.4%) 
• Nonfocal ARDS = 35 patients (45.5%). 
From these numbers, we can build the contingency 

table that corresponds to the association among lung 
morphology (type of ARDS) and 90-day mortality 
(Figure 2). 

First, the row variable is lung morphology, and 
it has two levels (focal vs nonfocal). Next, the col-
umn variable is 90-day mortality and it has 2 levels 
(yes vs no). Finally, the table must be populated, but 
be careful not to assume that there are no missing 
data. Begin with the cell counts: there were 6 focal 
ARDS patients and 35 nonfocal ARDS patients 
who died within 90 days. These two numbers popu-
late the fi rst column and result in a column total of 
41. Next, use the reported percentages to calculate 
the row totals. Six is 21.4% of 28, so the fi rst row 
total is 28. Thirty-fi ve is 45.5% of 77, so the second 
row total is 77. If there are 28 patients with focal 
ARDS and 77 with nonfocal ARDS, then the grand 
total is 28 + 77 = 105. The remaining values can 
be obtained by subtraction. If there are 105 total 
patients and 41 die within 90 days, then 105 − 41 = 
64 patients who do not die within 90 days and this 
is the second column total. Similarly, if there are 28 
focal ARDS patients and 6 die within 90 days, then 
28 − 6 = 22 patients who do not die within 90 days. 
Lastly, if there are 77 nonfocal ARDS patients and 
35 die within 90 days, then 77 − 35 = 42 patients 

who do not die within 90 days. Now the contin-
gency table is complete.

Once the contingency table is built, the question 
becomes, “Is lung morphology associated with 90-day 
mortality?” To answer that question, we need to know 
how many patients one would expect in each table cell 
if the null hypothesis of no association is true. When 
conducting a hypothesis test, one always assumes that 
the null hypothesis is true and then gathers data to 
see how well the data aligns with that assumption.

So one must calculate how many patients to expect 
in each of these cells if lung morphology is not associ-
ated with 90-day mortality. One way to address this 
question is to ask these 2 questions: 

(1) Overall, what proportion of patients die by day 
90? Looking at the constructed contingency table, 
that answer would be 39%. This was calculated by 
taking the total number of patients who died by day 
90 and dividing it by the total number of patients, 
41/105 = 39%. This gives the overall proportion, 
based on the data, who would die by day 90. 

(2) How many of the focal ARDS patients would 
be expected to die by day 90? Now it is not overall, but 
rather we are limiting the question to the focal ARDS 
group. To obtain the answer, multiply the overall pro-
portion of patients who die by day 90 by how many 
focal ARDS patients are in the study. Essentially, take 
the answer from the previous question and multiply it 
by the total number of focal ARDS, which is 28. The 
result is (41/105) × 28 = 10.9. Thus, if there is no 
association among long morphology and 90-day mor-
tality, one would expect 10.9 focal ARDS patients to 
die by day 90. 

Now 10.9 is a very specifi c answer for a specifi c 
contingency table, but the answer could be written 
in general terms. Basically, 3 numbers were used in 
calculating the solution: the row margin, the column 
margin, and the grand total. The general formula is 
the following:

H0: mortality is not associated with lung morphology
H1: mortality is associated with lung morphology

 Mortality at day 90
   Yes No
 Lung Focal ARDS 6 22 28
 morphology Nonfocal ARDS 35 42 77
   41 64 105

FIGURE 2. Study-specifi c hypothesis, study frequency counts, and 
resulting 2 × 2 contingency table. Patient numbers are from the 
Mrozek study.1 ARDS = acute respiratory distress syndrome
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The notation Eij is used to represent the expected 
count assuming the null hypothesis of no association 
among the row and column variables is true. To cal-
culate the expected count, take the ith row total times 
the jth column total and divide by the grand total. 

In the lung morphology and mortality example, 
what is the expected number of deaths within 90 
days among the nonfocal ARDS patients? This is the 
second row and the fi rst column (E21). Applying the 
formula, one multiplies the total for the second row 
by the total for the fi rst column and then divides by 
the grand total, (77 × 41)/105 = 30.1. This calcula-
tion is repeated for each of the 4 cells. 

Because we now know the observed cell count and 
the expected cell count (under the null hypothesis), 
we can compare the observed and expected counts to 
see how well the data aligns with the null hypothesis. 
This is what the chi-square test does, and the test sta-
tistic is calculated as follows:

The sigma (Σ) means addition, so the calculation is 
performed on each individual cell in the contingency 
table and then the results are summed. A 2 × 2 table 
has 4 cells and thus 4 numbers will be summed. For 
each cell, the formula compares the observed to the 
expected. Basically, it computes how similar they are 
(that is the O minus E part). Because the differences 
will be positive for some cells and negative for oth-
ers, the differences are squared to avoid cancellation 
when you add them. Finally, each squared difference 
is divided by the expected count to standardize the 
calculation. 

Intuitively, if the observed counts (Oij) are simi-
lar to the expected counts under the null hypothesis 
(Eij), then these 2 numbers will be very close to each 
other. When taking the difference between them or 
subtracting them, the result is a small number. When 

squaring a small number, one obtains a really small 
number. And adding up a bunch of really small num-
bers results in a small number. So the test statistic is 
going to be small. That means that the resulting P 
value is going to be large. What is a P value? Think 
of it as an index of compatibility. How compatible 
is the data with the null hypothesis? Here, you get 
a large index of compatibility. That means that the 
data aligns nicely with the null hypothesis and one 
fails to reject the null. 

Now, think about the alternative scenario. If the 
observed counts (Oij) are wildly different from the 
expected counts under the null hypothesis (Eij), then 
these 2 numbers will be quite different. When taking 
the difference between them or subtracting them, the 
result is a big number. When squaring a big number, 
one obtains a really big number, and adding up a 
bunch of really big numbers results in a large number. 
So the test statistic is going to be large. That means 
that the resulting P value is going to be small. And if 
you think of a P value as an index of compatibility, the 
data and the null hypothesis are not very compatible. 
That means that the data does not align nicely with 
the null hypothesis and one rejects the null. This is 
the general idea of the chi-square test. It assesses how 
compatible the data is with the null hypothesis that 
the 2 categorical variables are not associated. 

To obtain the actual P value, the distribution of 
the test statistic (under the null hypothesis) is used to 
calculate the area under the curve for values equal to 
the test statistic or more extreme. The described test 
statistic has an approximate chi-square distribution 
with (r − 1)(c − 1) degree of freedom. Recall that r is 
the number of levels of the row variable and c is the 
number of levels of the column variable. Our example 
is a 2 × 2 table, so the test statistic has an approxi-
mate chi-square distribution with (2 − 1)(2 − 1) = 1 
degree of freedom. 

Now that the chi-square test has been fully 
described, the assumptions for the test must be dis-
cussed. It is important to know when you should 
or should not perform this test. The chi-square test 
assumes that observations are independent. This 
means that the outcome for one observation is not 
associated with the outcome of any other observa-
tion. This principle can be violated when multiple 
measurements are taken over time or when multiple 
measurements are taken from one patient.

Another assumption is that the chi-square large 
sample approximation just described is appropriate. 
In other words, no more than 20% of the expected 
counts (Eij) are less than 5. For a 2 × 2 table, how 

Eij =
(ith row total)(jth column total)

grand total =
ni+n+j

n

E11 =
(1st row total)(1st column total)

grand total

=
(28)(41)

105 = 10.9

E12 =
(1st row total)(2nd column total)

grand total

=
(28)(64)

105 = 17.1

E21 =
(2nd row total)(1st column total)

grand total

=
(77)(41)

105 = 30.1

E22 =
(2nd row total)(2nd column total)

grand total

=
(77)(64)

105 = 46.9

χ2 = Σ Σ
(Oij – Eij)

2

Eij

22

i = 1 j = 1



CLEVELAND CLINIC JOURNAL OF MEDICINE         VOLUME 84 • SUPPLEMENT 2         SEPTEMBER 2017    e23

NOWACKI

many cells do you have? Four. So if even one of those 
4 happens to have an expected count less than 5, this 
assumption is violated. For a 2 × 2 table, none of the 
expected counts can be less than 5. 

Returning to the lung morphology and mortality 
example, were the assumptions met? The data consist 
of 105 unique patients. Thus, we can assume that they 
are independent. The minimum expected count was 
10.9, which is not less than 5. Therefore, the assump-
tions for the chi-square test are met. Next, the test 
statistic is calculated using the observed and expected 
counts. For each cell, subtract the expected count 
from the observed count, square it, and divide by the 
expected count. Then, add the 4 resulting numbers to 
obtain the test statistic of 4.92. 

Finally, compute the area under the chi-square 
distribution with 1 degree of freedom, χ2

(1), at the 
test statistic and values more extreme. In this case, 
values more extreme are values greater than the test 
statistic. Here, the area under the curve to the right 
of 4.92 is .027 (Figure 3). This is the P value, which 
indicates that the data and the null hypothesis have 
very low compatibility. In this example, the area 
under the curve to the right of 4.92 is .027 (Figure 
3). This is the P value, which indicates that the data 
and the null hypothesis have very low compatibility. 
Thus, the decision is to reject the null hypothesis. 
The conclusion is that lung morphology is associ-
ated with 90-day mortality (P = .027). To describe 
that association, one looks at the contingency table 
and fi nds a reduction in 90-day mortality with focal 
patterns compared to nonfocal patterns (21.4% vs 
45.5%, respectively). The P value reported in the 
article is .026. Our hand calculation was .027, which 
is slightly off due to rounding. In summary, the sce-
nario is an investigation into the association among 
2 categorical variables, and, thus, a test to consider is 
the chi-square test, if assumptions are met.

In another example in the same study, the authors 
investigate whether any baseline characteristics are 
associated with lung morphology. For example, is 
neurology, specifi cally Parkinson disease (yes vs no), 
associated with lung morphology (focal vs nonfo-
cal)? Again, the scenario is an investigation into the 
association between 2 categorical variables, so a chi-

square test should be considered. 
To start, build a contingency table arbitrarily plac-

ing lung morphology as the row variable and Par-
kinson disease as the column variable. Populate the 
contingency table based on the counts and percent-
ages reported in the article (Figure 4). Next, check 
that the assumptions of the chi-square test are met. 
Are the observations independent? Again, because 
these are unique patients, we consider this assump-
tion met. Since this is a 2 × 2 table, are all of the 
expected counts greater than 5? Calculations of the 
expected counts obtained the following: 1.1, 30.9, 
2.9 and 84.1. Here, 2 of the 4 expected counts are 
less than 5. Therefore, methods that use large sample 
approximation, like the chi-squared test, may not be 
an appropriate choice. 

Instead of using methodology that is an approxi-
mation, consider an exact test such as Fisher’s exact 
test. Again, refer to the contingency table where 
Fisher’s exact is going to calculate the exact probabil-
ity (under the null hypothesis) of the observed data 
or results more extreme. This is the technical defi ni-
tion of a P value. It is, however, still quantifying how 
compatible the data are with the null hypothesis. The 
exact probability of a particular contingency table can 
be obtained using the hypergeometric distribution.

The symbols that resemble large parentheses are 
notations for a combinatorial. Because using combina-
torials to calculate the probability is not user friendly, 

χ2 = Σ Σ
(Oij – Eij)

2

Eij

22

i = 1 j = 1

=
(6 – 10.9)2

10.9
(22 – 17.1)2

17.1
(35 – 30.1)2

30.1
(42 – 46.9)2

46.9+ + +

= 4.92

FIGURE 3. Chi-square distribution with 1 degree of freedom. Area 
under the curve at the test statistic of 4.92 and values more extreme 
equals the P value of .027.

From StatKey website: www.lock5stat.com/statkey

P value

Chi-squared distribition

(r − 1)(c − 1)

prob =
(n+1)!•(n+2)!•(n1+)!•(n2+)!
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n
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an equivalent version relies on factorials instead. 
Both techniques are presented above. Remember 
that the goal is to fi nd the exact probability of the 
observed data or something more extreme. 

The hypotheses are still testing whether these 2 
categorical variables are associated with each other. 
In this particular example, we test if the proportion 
of patients with Parkinson disease is the same in the 
focal and nonfocal groups. Fisher’s exact test obtains 
its two-tailed P value by computing the probabilities 
associated with all possible tables that have the same 
row and column totals. Then, it identifi es the alterna-
tive tables with a probability that is less than that of 
the observed table. Finally, it adds the probability of 
the observed table with the sum of the probabilities of 
each alternative table identifi ed above, which results 
in the P value. 

To explore each of those steps in detail, one must 
fi rst enumerate how many tables can be built that all 
have the same row and column totals as the observed 
table. Figure 5 shows the 5 possible tables. Pick any 
one of the 5 2 × 2 tables; the margins are fi xed. Each 
table has the same row totals, 32 focal and 87 non-
focal, and each table has the same column totals: 4 
Parkinson and 115 non-Parkinson. Then, for each 
table, calculate the probability of that table. Figure 5 
shows this calculation for the fi rst 2 × 2 table, which 
happens to be the observed table. The probability of 
the table observed in the study is .2803. Such a calcu-
lation is performed on each of the other tables. 

Next, one must identify the tables that have a 
probability smaller than the observed table. Here, we 
are looking for probabilities less than .2803. These 
are the tables deemed more extreme. Tables 3, 4, and 
5 have probabilities less than .2803. 

The fi nal step is to sum the probability of the 
observed table and the more extreme tables (ie, those 
with probabilities < the observed table) (.2803 + .2337 
+ .0543 + .0045 = .5728). Thus, the resulting rounded 

P value is .57, which indicates a high level of compat-
ibility between the data and the null hypothesis of no 
association. The decision is to fail to reject the null 
hypothesis and the conclusion is that the evidence 
does not support an association among lung morphol-
ogy and Parkinson disease. In other words, there is 
insuffi cient evidence to claim that the proportion of 
Parkinson disease differs between the focal and nonfo-
cal ARDS patients (0% vs 5%, P = .57). This matches 
the P value reported by Mrozek for this association. 

The fi rst objective of this article was to identify 
scenarios in which a chi-square or Fisher’s exact test 
should be considered. The general setting discussed 
was an investigation of the association between two 
categorical variables. Use of each test specifi cally 
depends on whether the assumptions have been met. 
Both of the examples used in our discussion happened 
to be binary, but that is not a restriction. Categori-
cal variables can have more than 2 levels. All of the 
methods demonstrated for 2 × 2 tables can be gener-
alized to r × c tables.  

H0: Parkinson disease is not associated with lung morphology
H1: Parkinson disease is associated with lung morphology

 Mortality at day 90
   Yes No
 Lung Focal ARDS 0 32 32
 morphology Nonfocal ARDS 4 83 87
   4 115 119

FIGURE 4. Study-specifi c hypothesis and contingency table of lung 
morphology by Parkinson disease. Patient numbers are from the 
Mrozek study.1 ARDS = acute respiratory distress syndrome

Table Group PD No PD Probabilities

 1 Focal 0 32 .2803 + (Observed)
  Nonfocal 4 83
 2 Focal 1 31 .4271
  Nonfocal 3 84
 3 Focal 2 30 .2337 +
  Nonfocal 2 85
 4 Focal 3 29 .0543 +
  Nonfocal 1 86
 5 Focal 4 28 .0045 +
  Nonfocal 0 87

Let π1 and π2 represent the Parkinson disease (PD) rates for 
the focal and nonfocal groups, respectively. 

H0: π1 = π2 (no association)

Ha: π1 ≠ π2 (association) 

FIGURE 5. Hand calculations of the Fisher’s exact test. Note that 
all tables have the same row and column totals. The probabilities 
of each table are calculated according to the hypergeomet-
ric distribution. Tables deemed “more extreme” (ie, with 
probabilities < the observed table) are indicated with a +. 
The P value is obtained by summing the probabilities of the 
observed table and those more extreme.

prob1 =
(4)!•(115)!•(32)!•(87)!

(119)!•(0)!•(32)!•(4)!•(83)!
= .2803
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The second objective of this article was to recog-
nize when test assumptions have been violated. For 
simplicity, most researchers adhere to the follow-
ing: if ≤ 20% of expected cell counts are less than 
5, then use the chi-square test; if > 20% of expected 
cell counts are less than 5, then use Fisher’s exact 
test. Both methods assume that the observations are 
independent. Could one use the exact test when the 
chi-square assumptions are met? Yes, but it is more 
computationally expensive as it uses all possible fi xed 
margin tables and their probabilities. If the chi-square 
assumptions are met, then the sample size is typically 
larger and these calculations become numerous. Also, 
it does not have to be that large of a sample for the 
chi-square to be a good approximation and do it very 
quickly. 

The fi nal objective of this article was to test claims 
made regarding the association of 2 independent cat-
egorical variables. We included examples from the 
medical literature showing step-by-step calculations 
of both the large sample approximation (chi-square) 
and exact (Fisher’s) methodologies providing insight 
into how these tests are conducted as well as when 
they are appropriate.
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