COVID-19 serologic testing: FAQs and caveats

There has been an immense amount of discussion regarding the potential usefulness of serologic testing for COVID-19. Serologic testing has never been routinely used for diagnosing infections with “respiratory viruses” such as influenza, parainfluenza, respiratory syncytial viruses, adenoviruses, or metapneumovirus, nor was it used routinely for diagnosis during the global epidemics of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and H1N1 influenza. However, the pandemic status of COVID-19 and the shortage of nucleic acid detection kits and swabs in certain areas raise the prospect of resorting to serology as an alternative to direct testing for the virus, and it is relevant to ask how useful it may be. The Infectious Diseases Society of America has recently issued a clear statement on COVID-19 serology.1

The following addresses some common questions regarding serologic testing for COVID-19.

Is IgM/IgA serology reliable for diagnosing acute symptomatic COVID-19?

Based on recent publications,2 the appearance of detectable immunoglobulin M (IgM) antibodies after infection with COVID-19 is delayed, resulting in abysmal sensitivity ranging from 17% to 50% in the first 10 to 14 days after the “onset” of symptoms. Note that this is not days after exposure or infection, but rather days after the onset of clinical symptoms. Unfortunately, the results may not be clinically useful because COVID-19 often progresses very quickly within the first 7 to 10 days.3 Thus, by the time of seroconversion, patients could be critically ill with septic shock or multiorgan failure, or they could die before seroconverting.

Most hospitalized patients typically receive the diagnosis of COVID-19 by nucleic acid testing before admission or up to 24 hours after admission. Unfortunately, by the time of serologic diagnosis, the patient may have inadvertently infected innumerable contacts.

There are no carefully peer-reviewed studies regarding the specificity of IgM and IgA tests, even though numerous point-of-care and non-point-of-care enzyme immunoassays (EIAs) are commercially available. IgM serologic tests, in general, have an inherent predisposition to false-positive results. Viruses as distantly related as Dengue virus have been reported to cause false-positive IgM results in COVID-19 point-of-care serologic tests.4

COVID-19 IgA EIAs had false-positive results in 20% of samples from 2,018 patients in the United States (author’s personal communications). The potential for a rapidly progressing clinical course of COVID-19, combined with the low sensitivity of IgM testing during the first 10 days of clinical infection, makes this low specificity of IgA testing a concern, since class-switching to IgA typically occurs after the appearance of IgG.

Is IgG serology a reliable option for diagnosing acute or convalescent COVID-19?

IgG seroconversion is delayed after the onset of symptoms (more than 35 days in some cases), but typically occurs in 2 to 3 weeks, at which time it can be detected if the test specificity is high. Commercially available serologic assays, typically enzyme-linked immunosorbent assays (ELISAs), require validation with a plaque-reduction neutralization test (PRNT).

In brief, PRNT requires mixing live viruses with serially diluted serum followed by
cell cultures to view cytopathic effect. PRNT is a functional assay that requires significant expertise and a biosafety level 3 facility (not available in hospitals), and it is not amenable to automation; however, it is necessary when any new assay is being validated. Ideally, this test should be done by manufacturers prior to US Food and Drug Administration submission; if this is a lab-developed test, the onus is on the lab to ensure PRNT is done on-site or in collaboration with a reference lab that has PRNT capability. Additionally, PRNT needs to be done head-to-head against other known coronaviruses, particularly those that are commonly acquired in the community (e.g., 229E, OC43, NL63, HKU1), which have always been detected using nucleic acid amplification tests. Thus far, none of the published studies or commercially available kits have documentation of such validation.

That said, PRNT has its limitations. Previous exposure to common coronaviruses may lead to an early and high-titer humoral immune response to SARS-CoV-2. As time elapses, however, the humoral response probably becomes more specific to SARS-CoV-2. Studies have shown greater than 90% seroprevalence of common coronaviruses in the United States. Interestingly, Wölfel et al\(^2\) report finding a significant degree of serologic cross-reactivity between SARS-CoV-2 and common coronaviruses. Further, IgG responses were much stronger and appeared earlier than IgM responses. It seems that exposure to SARS-CoV-2 triggers previous memory response to all common coronaviruses. Based on the current information, it is not clear which target provides the best specificity, but specificity should increase over time as the immune response becomes more fine-tuned. This, however, will be well beyond the recovery time and, thus, of no use for diagnostic purposes.

In addition to cross-reactivity with common coronaviruses, false-positive results are seen using serum with elevated antinuclear antibody titers. Elevated titers are relatively common in patients over age 50, which happens to overlap with the median age for COVID-19 diagnosis. False-positive results have also been documented with serum from patients with influenza or influenza vaccine recipients. Flu vaccine recipients constitute a large population—45% of the adult US population, according to the US Centers for Disease Control and Prevention (CDC)—who may have overlapping signs and symptoms of influenza and COVID-19.

On the IgG side, false-positives using both EIA and point-of-care testing kits also have been observed in serum samples from patients with herpes simplex virus type 1, human metapneumovirus, enterovirus, parvovirus B19, and sera-positive rheumatoid factor, among others. Finally, even if IgG is to be used with a highly specific ELISA for diagnosing acute COVID-19 infection, one still has to wait several weeks to see a minimum 4-fold rise in antibody levels. This would be too late to be of clinical use. And testing requires a minimum of 2 blood draws (acute and convalescent), exposing sick patients to even more healthcare environments.

Is IgG serology reliable for evaluating infectivity and clinical immunity to reinfection with COVID-19?

No one knows. Patients with a positive IgG result may still be sick and can shed the virus through their respiratory secretions or stools. SARS-CoV-2 is an enveloped RNA virus belonging to the Coronaviridae family, which includes common coronaviruses such as 229E, OC43, NL63, HKU1, and several that infect animals. Upper respiratory samples can remain positive for viral RNA for a few weeks after onset, when patients are supposed to have IgG antibodies. Viral shedding in stool has been reported for up to 47 days, which speaks against authentic neutralizing capacity of tissue-transudated IgG and secretory IgA antibodies.\(^5\) SARS-CoV (a SARS-CoV-2 sister virus) has been grown in cultures from upper respiratory samples in 54% of cases at 2 weeks after symptom onset and in 16% of cases at 3 weeks after symptom onset, despite documented seroconversion in more than 92% of patients assessed by PRNT that detected “neutralizing antibodies.”\(^6\) Thus, having circulating neutralizing antibodies may not ensure lack of infectivity. This has yet to be shown in SARS-CoV-2.

As of this writing, the CDC has not established guidelines for occupational health isola-
tion disposition based on serologic testing, other than using 2 consecutive negative nucleic-acid amplification tests at least 24 hours apart.7

Regarding COVID-19, the correlate of protection is not known, although these levels have been established for many other viral diseases. For example, the correlate of protection for hepatitis B is a surface antibody level at or very close to 10 mIU/mL, and this measure is routinely used for occupational health purposes. For COVID-19, the correlate of protection has to be established in large, well-designed randomized controlled trials, which have not been conducted. Therefore, determination of “immune status” of individuals, including healthcare workers, to SARS-CoV-2 cannot be established at this time using serology. To further confound matters, all individuals can be infected and become sick with common coronaviruses in the community in almost every season and sometimes several times during a season. This suggests that immunity to some coronaviruses is short-lived, and lingering IgG antibodies from previous seasons does not mean an individual is necessarily immune to infection with the same coronaviruses. Furthermore, cell-mediated immunity (typically mediated through CD8+ memory T cells) also plays a role.

More recently, it has been shown that 20% of individuals do not mount neutralizing antibodies and over 50% mount only low titer neutralizing antibodies with geometric titer of 142. The rest (< 30%) are able to mount high titer neutralizing antibodies, but whether they will last and whether they are protective is not known.8

Is IgG serology reliable for screening a COVID-19-convalescent donor?
The discussions in the previous 2 items provide a segue to answer this question. First, we do not know if EIA results correlate well with PRNT (ie, ELISA antibodies vs neutralizing antibodies). And if they do correlate well, then second, we do not know if the so-called neutralizing antibodies are neutralizing enough to confer immunity.

Shen et al9 gave critically ill patients infusions of 400 mL of convalescent plasmas collected from donors with clinically resolved COVID-19. Interestingly, the critically ill recipients’ pretransfusion neutralization titers were approximately only 1 dilution different than those of the donors (pretransfusion neutralizing antibody geometric titers of 192 and 80, in donors and patients, respectively). Further, Duan et al10 found that severely ill patients had neutralization titers as high as 1:640 before receiving transfusions of convalescent plasma. Healthy and COVID-19-resolved donors had titers higher than 640.

These results raise the question as to why patients who already had mounted neutralizing antibody titers were still critically ill. This could be explained by the phenomenon called antibody-dependent enhancement, in which viruses can gain access to Fc gamma receptor-expressing cells via antibody-recognizing receptors as opposed to viral receptors and proliferate or trigger those cells to respond with a vigorous and potentially harmful cytokine release (cytokine storm). More recently, Wölfel et al12 grew SARS-CoV-2 in upper and lower respiratory samples from onset until day 8 but not beyond that. This suggests that transfusion of convalescence-phase plasma may not have a role beyond day 8 after onset. This is important, as passive immunotherapy is typically considered in critically ill patients who are well beyond this time point.

Antibody-dependent enhancement has been shown in coronaviruses, which may potentially lead to more severe subsequent coronaviral diseases. Although this may have implications for vaccine design (similar to those of Dengue vaccine), it may also lead to potential adverse outcomes for convalescent plasma therapy. At this juncture, we do not have any evidence that plasma from patients who have recovered offers clear clinical benefit, as it showed mixed results for SARS or MERS.11 Further, SARS-CoV and SARS-CoV-2 can cause syncytium formation among lung epithelial cells, thereby paving the way for cell-to-cell transmission of the virions. In this way, virions may be protected from antibody neutralization.

Using a serologic test with poor or unknown performance characteristics to “green-light” distributing blood products (plasma) is not really an undertaking for hospital labs. The
SEROLOGIC TESTING

US Food and Drug Administration (FDA),然而，推荐中和抗体效价至少为1:160，但效价为1:80可能被认为是可接受的，如果找不到替代匹配的单元。FDA还建议，只有对严重或立即威胁生命的COVID-19患者，才考虑使用康复期血浆。FDA进一步澄清，尽管有希望，康复期血浆尚未在所有研究的疾病中被证明有效。因此，在大规模临床试验中确定其安全性之前，不能常规使用康复期血浆治疗COVID-19。12

简而言之，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

是否IgG血清学可靠用于SARS-CoV-2血清学调查？

也许，但这一切都取决于测试的准确性。血清学可以用于调查或血清流行病学研究，这是公共卫生方面或一个学术项目。一旦经过校准的测试是可用的，并且提供资源，影响评估将需要在较大范围内进行，包括平衡且不偏不倚的样本，其中包括不同的年龄、性别和地理群体。

另一个方面是评估被感染但无症状的人口比例，并计算病死率（CFR）。前者是作为背景的流行病学知识，但病死率更具重要性，尽管它可能带来潜在的成本。成本是无症状病例被计入时，CFR的计算可能会突然下降，以及可能使公众进一步松懈预防措施，从而进一步传播感染。

这是美国和药管理署（FDA）12，但中和抗体效价为1:80可能被认为是可接受的，如果找不到替代匹配的单元。FDA还建议，只有对严重或立即威胁生命的COVID-19患者，才考虑使用康复期血浆。FDA进一步澄清，尽管有希望，康复期血浆尚未在所有研究的疾病中被证明有效。因此，在大规模临床试验中确定其安全性之前，不能常规使用康复期血浆治疗COVID-19。12

简而言之，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

是否IgG血清学可靠用于SARS-CoV-2血清学调查？

也许，但这一切都取决于测试的准确性。血清学可以用于调查或血清流行病学研究，这是公共卫生方面或一个学术项目。一旦经过校准的测试是可用的，并且提供资源，影响评估将需要在较大范围内进行，包括平衡且不偏不倚的样本，其中包括不同的年龄、性别和地理群体。

另一个方面是评估被感染但无症状的人口比例，并计算病死率（CFR）。前者是作为背景的流行病学知识，但病死率更具重要性，尽管它可能带来潜在的成本。成本是无症状病例被计入时，CFR的计算可能会突然下降，以及可能使公众进一步松懈预防措施，从而进一步传播感染。

是的，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

在短，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

SEROLOGIC TESTING

US Food and Drug Administration (FDA),然而，推荐中和抗体效价至少为1:160，但效价为1:80可能被认为是可接受的，如果找不到替代匹配的单元。FDA还建议，只有对严重或立即威胁生命的COVID-19患者，才考虑使用康复期血浆。FDA进一步澄清，尽管有希望，康复期血浆尚未在所有研究的疾病中被证明有效。因此，在大规模临床试验中确定其安全性之前，不能常规使用康复期血浆治疗COVID-19。12

简而言之，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

是否IgG血清学可靠用于SARS-CoV-2血清学调查？

也许，但这一切都取决于测试的准确性。血清学可以用于调查或血清流行病学研究，这是公共卫生方面或一个学术项目。一旦经过校准的测试是可用的，并且提供资源，影响评估将需要在较大范围内进行，包括平衡且不偏不倚的样本，其中包括不同的年龄、性别和地理群体。

另一个方面是评估被感染但无症状的人口比例，并计算病死率（CFR）。前者是作为背景的流行病学知识，但病死率更具重要性，尽管它可能带来潜在的成本。成本是无症状病例被计入时，CFR的计算可能会突然下降，以及可能使公众进一步松懈预防措施，从而进一步传播感染。

是的，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

在短，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

SEROLOGIC TESTING

US Food and Drug Administration (FDA),然而，推荐中和抗体效价至少为1:160，但效价为1:80可能被认为是可接受的，如果找不到替代匹配的单元。FDA还建议，只有对严重或立即威胁生命的COVID-19患者，才考虑使用康复期血浆。FDA进一步澄清，尽管有希望，康复期血浆尚未在所有研究的疾病中被证明有效。因此，在大规模临床试验中确定其安全性之前，不能常规使用康复期血浆治疗COVID-19。12

简而言之，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

是否IgG血清学可靠用于SARS-CoV-2血清学调查？

也许，但这一切都取决于测试的准确性。血清学可以用于调查或血清流行病学研究，这是公共卫生方面或一个学术项目。一旦经过校准的测试是可用的，并且提供资源，影响评估将需要在较大范围内进行，包括平衡且不偏不倚的样本，其中包括不同的年龄、性别和地理群体。

另一个方面是评估被感染但无症状的人口比例，并计算病死率（CFR）。前者是作为背景的流行病学知识，但病死率更具重要性，尽管它可能带来潜在的成本。成本是无症状病例被计入时，CFR的计算可能会突然下降，以及可能使公众进一步松懈预防措施，从而进一步传播感染。

是的，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

在短，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

SEROLOGIC TESTING

US Food and Drug Administration (FDA),然而，推荐中和抗体效价至少为1:160，但效价为1:80可能被认为是可接受的，如果找不到替代匹配的单元。FDA还建议，只有对严重或立即威胁生命的COVID-19患者，才考虑使用康复期血浆。FDA进一步澄清，尽管有希望，康复期血浆尚未在所有研究的疾病中被证明有效。因此，在大规模临床试验中确定其安全性之前，不能常规使用康复期血浆治疗COVID-19。12

简而言之，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。

是否IgG血清学可靠用于SARS-CoV-2血清学调查？

也许，但这一切都取决于测试的准确性。血清学可以用于调查或血清流行病学研究，这是公共卫生方面或一个学术项目。一旦经过校准的测试是可用的，并且提供资源，影响评估将需要在较大范围内进行，包括平衡且不偏不倚的样本，其中包括不同的年龄、性别和地理群体。

另一个方面是评估被感染但无症状的人口比例，并计算病死率（CFR）。前者是作为背景的流行病学知识，但病死率更具重要性，尽管它可能带来潜在的成本。成本是无症状病例被计入时，CFR的计算可能会突然下降，以及可能使公众进一步松懈预防措施，从而进一步传播感染。

是的，使用血清学来筛查COVID-19康复期的献血者是风险的，不仅因为没有强大的科学依据，而且因为没有FDA批准的产品用于献血者筛查。此外，中和试验与其他测试形式之间的相关性往往较弱，使得很难使用商业测试用于此目的。
tus became symptomatic. More recently, the CDC reported that of 4,336 exposed healthcare workers (median age 42) with confirmed COVID-19 diagnosis (by RNA testing), only 8% did not report any symptoms. It should also be mentioned that according to an earlier study, also from California, about 5% of individuals with flulike illness tested positive for COVID-19 by RNA testing.

Serosurveys may help with understanding herd immunity. With a minimum calculated basic reproduction number of 2.2, a minimum of 55% of the population is needed to be immune to prevent large outbreaks. With current interventions we may never reach such a point unless an effective vaccine becomes available. Therefore, a serosurvey may not necessarily help with this aspect.

Finally, according to a large epidemiologic joint report from China and the World Health Organization, only 1% of cases were asymptomatic based on typical symptoms; of symptomatic cases, 81% were mild or moderate and 19% were severe or critical. This was also reviewed and summarized later by Wu and McGoogan; although in almost all jurisdictions severe and critical cases get tested for RNA (as are less-severe cases based on expanded other indications), it is relatively safe to multiply the announced number of confirmed cases by 5 to arrive at the estimated total number.

All in all, a careful analysis of harm and cost vs benefit needs to be done prior to conducting such large-scale serosurveys, if needed at all.

REFERENCES


Address: Kamran Kadkhoda, PhD, Department of Laboratory Medicine, LL3-3, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195; kadkhods@ccf.org