Perioperative management of pregnant women undergoing nonobstetric surgery

ABSTRACT

Nonobstetric surgery during pregnancy should be avoided if possible, but when surgery is required, an obstetrician should be part of the perioperative team. In general, preoperative assessment is similar regardless of whether a woman is pregnant, but cardiovascular, pulmonary, hematologic, and renal changes of pregnancy can increase surgical risk and must be taken into account. Special management considerations include pregnancy-associated laboratory changes, timing of surgery, anesthesia choice, intubation precautions, patient positioning, preoperative blood typing, intraoperative fetal monitoring, and venous thromboembolism prophylaxis.

KEY POINTS

Surgery increases the risk of complications in pregnancy, including preterm delivery.

Surgery that cannot wait until after delivery should be conducted during the second trimester, if possible.

During surgery, pregnant women should be placed in the left lateral tilt position at 30° to avoid vena cava compression.

Neuroaxial anesthesia is preferred if possible.

Low-molecular-weight heparin in prophylactic doses is recommended perioperatively to prevent venous thromboembolism.

Important physiologic changes take place during pregnancy that optimize maternal and fetal outcomes but increase risk during surgery. Accommodating normal changes and identifying and managing risk factors should guide perioperative planning.

This article reviews physiologic changes in pregnancy, implications for perioperative management of nonobstetric surgery, and practical notes for clinical management.

NONOBSTETRIC SURGERY IN PREGNANCY IS RARE AND RISKY

From 0.2% to 2.0% of pregnant women undergo nonobstetric surgery.1,2 In order of frequency, the most common procedures are appendectomy, cholecystectomy, adnexal surgery (for torsion or masses), trauma repair, small-bowel obstruction surgery, and breast surgery.2–4

The American College of Surgeons National Surgical Quality Improvement Program reported a postoperative complication rate of 5.8% in pregnancy. Complications included reoperation within 30 days (3.6%), infections (2%), wound problems (1.4%), respiratory complications (2%), thromboembolic complications (0.5%), transfusion requirements (0.2%), and death (0.25%).4

A study of 5,591 pregnant women in Taiwan5 found that the rates of the following postoperative complications were higher than among nonpregnant women:

- Sepsis (odds ratio [OR] 1.75, 95% confidence interval [CI] 1.47–2.07)
- Pneumonia (OR 1.47, 95% CI 1.01–2.13)
PREGNANT WOMEN UNDERGOING NONOBSTETRIC SURGERY

Preterm delivery is a common and feared complication of surgery

Urinary tract infection (OR 1.29, 95% CI 1.08–1.54)

Death (OR 3.94, 95% CI 2.62–5.92).

One of the most common and feared complications from the obstetric perspective is preterm delivery. In a series of 86 pregnant women who underwent nonobstetric surgery in 1992 through 2014, the rate was 41% despite low rates of intraoperative and immediate postoperative complications.

| TABLE 1 |
| Benign cardiovascular findings in pregnancy |

Physical examination
- Increased intensity of arterial pulses
- Cephalic and lateral displacement of the point of maximum impulse
- Prominent splitting of the second heart sound
- Systolic murmur in the pulmonary and tricuspid areas
- Enhancement of preexisting murmurs
- Systolic-diastolic murmur heard over 1 or both breasts ("mammary souffle")

Electrocardiogram
- Left axis deviation
- Left atrial dilatation
- Q-wave and T-wave inversion in III
- Q wave in aVF
- T-wave inversion in V1, V2, and V3

Special cardiovascular assessment not usually needed
American Heart Association and American College of Cardiology 2014 guidelines for preoperative cardiac evaluation for noncardiac surgery advise the same approach for pregnant and nonpregnant patients. Obstetric patients rarely need cardiovascular diagnostic studies.

Several electrocardiographic changes (Table 1) can be attributed to heart elevation by the enlarged uterus and to increased blood volume.

Echocardiography can be safely used in pregnancy. Its indications are to assess underlying congenital heart disease, heart valve disorders, a new nonphysiologic murmur, or a third or fourth heart sound.

For pregnant women with heart disease, the CARPREG (Cardiac Disease in Pregnancy) II index is useful for preoperative evaluation (Table 2).

RESPIRATORY CONSIDERATIONS

The growing uterus pushes up on the diaphragm, restricting the lungs and reducing functional residual capacity by about 20% when the patient is upright and 50% to 70% when recumbent. Minute volume and tidal volume increase during pregnancy by about 35%, predisposing patients to respiratory alkalosis. Thus, one would expect faster induction with inhalation anesthesia.

Despite the expected pulmonary changes associated with pregnancy, tachypnea should be regarded as unusual and warrants formal assessment. If the patient suddenly begins breathing rapidly, evaluate for pulmonary embolism.
Pulmonary preoperative assessment and optimization
Attempts to place an endotracheal tube fail in about 1 in 300 cases in pregnancy, a rate about 10 times higher than in the general population.18,19

Anesthesiologists should consider reduced functional residual capacity, possible increased airway edema, and reduced oxygen delivery secondary to the physiologic anemia of pregnancy as risk factors for hypoxemic respiratory failure.2

No formal guidelines have been published for preoperative pulmonary assessment in pregnancy. The most important purpose of assessment is to identify risks of a difficult airway and aspiration. The American Society of Anesthesiologists updated its general practice guidelines for managing difficult airways in 2003,20 and Mhyre et al21 proposed an algorithm in 2011 specifically for difficult intubations in obstetrics.

The 4-class Mallampati classification is used to assess the airway. Class 3 (ie, with the patient sticking out her tongue, the soft and hard palate and base of the uvula are visible but not the tonsils, or only the hard palate is visible) indicates increased likelihood that mask ventilation and endotracheal intubation will be difficult. For patients in this class, all airway protective measures should be taken.21,22

For patients who must be supine and in anticipation of periods of apnea (eg, before endotracheal intubation), supplemental oxygen should be used, and lung expansion maneuvers are strongly recommended to prevent atelectasis.17,23

In anticipation of a “difficult” airway, consider smaller endotracheal tubes and fiberoptic intubation.2

Table 2
Cardiac Disease in Pregnancy (CARPREG) II risk index

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of cardiac events or arrhythmia</td>
<td>3</td>
</tr>
<tr>
<td>Baseline New York Heart Association class III/IV or cyanosis</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical heart valve</td>
<td>3</td>
</tr>
<tr>
<td>Decreased ventricular function</td>
<td>2</td>
</tr>
<tr>
<td>History of mitral or aortic valve dysfunction</td>
<td>2</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>2</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>2</td>
</tr>
<tr>
<td>Aortic disease</td>
<td>2</td>
</tr>
<tr>
<td>Late pregnancy assessment</td>
<td>1</td>
</tr>
<tr>
<td>No previous intervention for existing cardiac problem</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score</th>
<th>Incidence of adverse cardiac events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 1</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>15%</td>
</tr>
<tr>
<td>4</td>
<td>22%</td>
</tr>
<tr>
<td>> 4</td>
<td>41%</td>
</tr>
</tbody>
</table>

Pregnancy can unmask underlying congenital cardiac disease or undiagnosed cardiomyopathy
PREGNANT WOMEN UNDERGOING NONOBSTETRIC SURGERY

If the onset of tachypnea is sudden, evaluate for pulmonary embolism

The pyelocaliceal system, increasing the propensity to develop urinary tract infections.2,24

In addition, a 50% higher glomerular filtration rate and other pregnancy-associated changes may cause specific laboratory values to either increase or decrease, so it is important to be aware of the “pregnancy normal” (Table 3).24–26 Increased plasma volume dilutes serum levels of albumin by an average of 1 mg/dL. This may cause serum calcium levels to decrease, although ionized calcium stays in the normal range.26

HEMATOLOGIC CONSIDERATIONS

In pregnancy, the red blood cell mass volume increases, but the plasma volume increases more, leading to dilutional anemia.27 At the same time, pregnancy is associated with a 6- to 10-fold higher risk of deep vein thrombosis than in age-matched women.28 This procoagulant state is attributed to increased production of clotting factors I, II, V, VII, VIII, X, and XII and a reduction of factors of the fibrinolytic system.29

Therefore, perioperative management should include prophylaxis against deep vein thrombosis30 with low-molecular-weight heparin (LMWH) in prophylactic doses.31,32

Some obstetricians routinely switch anticoagulation from LMWH to unfractionated heparin after gestational week 37 in anticipation of labor or emergency cesarean delivery. However, the safety profile of LMWH is superior to that of unfractionated heparin in pregnancy, with lower risks of bleeding, heparin-induced thrombocytopenia, and heparin-associated osteoporosis.33 In addition, several factors enhance the bioavailability of LMWH: it does not cross the placenta, it is less deactivated by tissue proteins owing to its smaller molecular size,34,35 and its half-life and volume of distribution increase in pregnancy.36

Consider Rh blood type

If surgery entails risk of uterine trauma and maternal-fetal hemorrhage, the mother’s blood group should be identified preoperatively.

If the mother is Rh-negative and the fetus is Rh-positive, the mother should be given anti-D immune globulin to minimize or prevent maternal-fetal isoimmunization.37 In general, the American College of Obstetricians and Gynecologists38 recommends giving prophylactic anti-D immune globulin to unsensitized Rh D-negative women at 28 weeks of gestation. After birth, in the case of Rh D-positive neonates, all confirmed unsensitized Rh D-negative women should receive anti-D

TABLE 3

<table>
<thead>
<tr>
<th>Laboratory test</th>
<th>Change in pregnancy</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum creatinine and blood urea nitrogen</td>
<td>Decrease due to increased glomerular filtration</td>
<td>Nonpregnancy normal values may indicate developing renal failure</td>
</tr>
<tr>
<td>Urine protein</td>
<td>Hyperfiltration leads to proteinuria</td>
<td>Small increases are normal, but > 300 mg/24 hours may indicate preeclampsia</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>Increases due to placentental production</td>
<td></td>
</tr>
<tr>
<td>Bilirubin and aminotransferases</td>
<td>Decrease</td>
<td>Nonpregnancy normal values of aminotransferases may indicate HELLP (hemolysis, elevated liver enzymes, low platelet count) syndrome</td>
</tr>
<tr>
<td>Thyroid-stimulating hormone</td>
<td>Decreases early, gradually normalizes</td>
<td>Free triiodothyronine and free thyroxine levels are stable and are better indicators of thyroid function than total values</td>
</tr>
<tr>
<td>Corticotropin and cortisol</td>
<td>Increase</td>
<td>Serum or salivary cortisol is not a reliable indicator of pathology</td>
</tr>
</tbody>
</table>
immune globulin within 72 hours of delivery (evidence level A).38

Anemia
The Network for the Advancement of Patient Blood Management, Haemostasis, and Thrombosis consensus for management of anemia in pregnancy recommends administration of intravenous iron in patients with severe iron deficiency anemia (hemoglobin < 8 g/dL) or newly diagnosed iron deficiency anemia beyond 34 weeks of gestational age.39 If the patient requires red blood cell transfusion, this should ideally not be influenced by arbitrary hemoglobin levels. In nonbleeding patients, red blood cell transfusion of a single unit can be considered when hemoglobin levels are less than 6 g/dL.

■ GASTROINTESTINAL CONSIDERATIONS
Gastroesophageal reflux is common in pregnant women owing to the growing uterus occupying more abdominal space, as well as progesterone contributing to slowing of gastric emptying time and reduced inferior esophageal sphincter tone.

Perioperative use of prokinetics, antacid medications, and reflux prevention strategies (eg, elevating the head of the bed at least 15°, fasting 8 hours) are recommended.40 However, one should avoid enteral particulate antacids (ie, colloid suspensions containing aluminum or magnesium hydroxide), which increase the risk of pneumonitis if aspirated.41

Pregnant women should be considered to have full gastric content before surgery. If intubation is needed, a rapid sequence intubation protocol is indicated.3

Pregnancy causes several changes in liver function (Table 3).40

■ ENDOCRINE CONSIDERATIONS
Hormonal changes during pregnancy are critical to maternal and fetal homeostasis.40 Changes occur in multiple systems, including the thyroid, and in glucose and adrenal metabolism.42

Human chorionic gonadotropin is structurally similar to thyroid-stimulating hormone (TSH), resulting in TSH suppression during the first trimester. Human chorionic gonadotropin peaks at the end of the first trimester, and TSH tends to normalize by the end of pregnancy. Free triiodothyronine and free thyroxine levels tend to remain stable throughout pregnancy, and their measurement is preferred to total hormone levels, given the dilutional decrease of circulating albumin and increase in thyroid-binding globulin.42,43

Pancreatic islet cells tend to hypertrophy, resulting in higher serum insulin levels that contribute to hypoglycemic episodes in early pregnancy. However, placental growth and increased secretion of placental lactogen increase insulin resistance, which may contribute to gestational diabetes in genetically predisposed patients.40

The pituitary tends to enlarge by about one-third during pregnancy, although this almost never leads to symptoms of optic chiasm compression. Prolactin levels increase progressively throughout pregnancy, enabling milk production.42

The placenta also produces corticotropin-releasing hormone, which increases the production of corticotropin and cortisol. It may be difficult to distinguish whether increased serum or salivary cortisol indicates a normal or pathologic state.44

■ GENERAL PERIOPERATIVE CONSIDERATIONS

Timing of surgery
Elective surgery should be postponed until after delivery, but urgent procedures necessary to save a patient’s life should be pursued regardless of pregnancy stage.45

Although patients can be reassured that anesthetic gases do not appear to be teratogenic, surgery during the first trimester may affect the rest of the pregnancy.3 The third trimester poses the highest risk for both mother and fetus; at that time, surgery becomes more technically difficult, and the fetus’s higher perfusion needs increase the risk of fetal hypoxia.

If there is a choice, the second trimester is the best time to undergo necessary surgery.

Include an obstetrician on the team
The American College of Obstetricians and Gynecologists and the American Society of Anesthesiologists recommend involving an obstetric specialist to help assess and manage pregnant women requiring any surgical or in-
A persistent third heart sound (gallop) or any diastolic murmur is abnormal.
ologic changes of pregnancy must be taken into consideration.

Diagnostic and therapeutic decisions should not neglect the mother and not withhold needed care for her with the purpose of protecting the fetus.

It is preferred to wait until the postpartum period for any elective surgery. However, if surgery is necessary, it can best be done during the second trimester. Emergency surgery should be pursued regardless of the gestational age. The preferred approach for abdominal surgery is by laparoscopy.

The preferred anesthetic approach is neuraxial anesthesia if possible.

Close communication among the internist, obstetric-gynecology specialist, and anesthesiologist is paramount to optimize the resources and clinical outcomes of the surgical obstetric patient.

■ DISCLOSURES

The authors report no relevant financial relationships which, in the context of their contributions, could be perceived as a potential conflict of interest.

■ REFERENCES

31. AURON AND COLLEAGUES

Address: Moises Auron, MD, FAAP, FACP, SFHM, Department of Hospital Medicine, M2 Annex, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195; auronm@ccf.org