Skip to main content
Log in

Hip fractures in young patients: Is this early osteoporosis?

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Hip fracture in patients under age 50 is rare, and is often not attributable solely to the energy of injury. Our aim was to determine if trabecular bone mineral density (BMD) is abnormal in young patients with hip fractures. We reviewed all hip fractures treated at our institution between 1979 and 1986 and contacted 20 patients under the age of 50 at the time of injury, all of whom wished to be studied. The mean age at the time of injury was 39 (range 24–47). Subjects were questioned for osteoporosis risk factors, classified by level of energy producing their injury, and then underwent quantitative computed tomography (QCT) bone densitometry of trabecular bone in the lumbar spine. Bone mineral density by QCT was below the mean for age in 90% of the patients, and was greater than 1 SD below the mean in 75%. Mean percentage BMD decrease from age-matched controls was 34% (P<0.005) in women and 19% (P<0.005) in men. There was an inverse correlation in the degree of BMD decrease and the energy level of injury. There was a direct correlation of the severity of BMD decrease and the cumulative number of osteoporosis risk factors. This investigation has found that 1–7 years following hip fracture, otherwise presumedly healthy young patients demonstrate a statistically significant decrease in spinal BMD from age/sex-matched controls. These data do not determine if osteopenia is the cause or the result of injury, nor do we wish to infer that measurement of bone density at one site can predict future fractures at other sites. However, as current thinking supports continuous age-related BMD decrease, this young group of patients with relatively low BMD for their age may be at increased risk for future development of more severe osteopenia. These findings suggest that the significance of hip fractures in young patients may currently be underestimated, and such patients may provide the unique opportunity for early identification of a group at increased risk for developing osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cummings SR, Kelsey JL, Nevitt MC, and O'Dowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7:178–208

    PubMed  CAS  Google Scholar 

  2. Kelsey JL, White AA, Pastides H, Bisbee GE (1979) The impact of musculoskeletal disorders on the population of the United States. J Bone Joint Surg 61-A: 959–964

    Google Scholar 

  3. Lane JM, Vigorita VJ (1984) Osteoporosis. Orthop Clin North Am 15: 711–728

    PubMed  CAS  Google Scholar 

  4. Riggs BL, Melton LJ (1986) Involutional osteoporosis. N Engl J Med 314: 1676–1686

    Article  PubMed  CAS  Google Scholar 

  5. Richardson ML, Genant HK, Cann CE, Ettinger B, Gordan GS, Kolb FO, Reiser UJ (1985) Assessment of metabolic bone diseases by quantitative computed tomography. Clin Orthop 195:224–238

    PubMed  Google Scholar 

  6. Schneider R (1984) Radiologic methods of evaluating generalized osteopenia. Orthop Clin North Am 15(4):631–651

    PubMed  CAS  Google Scholar 

  7. Lizaur-Utrilla A, Orts AP, Del Campo FS, Barrio JA, Carbonell PG (1987) Epidemiology of trochanteric fractures of the femur in Alicante, Spain, 1974–1982. Clin Orthop 218:24–31

    PubMed  Google Scholar 

  8. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 67-A:1206–1214

    Google Scholar 

  9. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ (1982) Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest 70:716–723

    PubMed  CAS  Google Scholar 

  10. Grande F, Keys A (1980) Body weight, body composition and calorie status. In: Goodhart RS, Shils ME (eds) Modern nutrition in health and disease, 6th ed. Philadelphia, Lea & Febiger, pp 3–34

    Google Scholar 

  11. Cann, CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6:1–7

    Article  PubMed  CAS  Google Scholar 

  12. Aitken JM (1984) Relevance of osteoporosis in women with fracture of the femoral neck. Br Med J 288:597–601

    Article  CAS  Google Scholar 

  13. Bohr H, Schaadt O (1983) Bone mineral content of femoral bone and lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Orthop 179:240–245

    PubMed  Google Scholar 

  14. Cummings SR (1985) Are patients with hip fractures more osteoporotic? Am J Med 78:487–494

    Article  PubMed  CAS  Google Scholar 

  15. Jensen GF, Christiansen C, Boesen J, Hegedus V, Transbol I (1982) Epidemiology of postmenopausal spinal and long bone fractures. Clin Orthop 166:75–81

    PubMed  Google Scholar 

  16. Iskrant AP (1968) The etiology of fractured hips in females. 58(3):485–490

    CAS  Google Scholar 

  17. Knowelden J, Buhr AJ, Dunbar O (1964) Incidence of fractures in persons over 35 years of age. Br J Prev Soc Med 18:130–141

    PubMed  CAS  Google Scholar 

  18. Alffram PA (1964) An epidemiologic study of cervical and trochanteric fractures of the femur in an urban population. Acta Orthop Scand (suppl) 65:9–109

    Google Scholar 

  19. Alffram PA, Bauer GCH (1962) Epidemiology of fractures of the forearm. J Bone Joint Surg 44-A:105–114

    PubMed  CAS  Google Scholar 

  20. Zetterberg CH, Irstam L, Andersson GB (1982) Femoral neck fractures in young adults. Acta Orthop Scand 53:427–435

    Article  PubMed  CAS  Google Scholar 

  21. Buchanan JR, Myers C, Greer RB, Lloyd T, Varano LA (1987) Assessment of the risk of vertebral fracture in menopausal women. J Bone Joint Surg 69-A:212–218

    Google Scholar 

  22. Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley WF (1987) Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Med 106:354–361

    PubMed  CAS  Google Scholar 

  23. Genant HK, Ettinger B, Cann CE, Reiser U, Gordan GS, Kolb FO (1985) Osteoporosis: assessment by quantitative computed tomography. Orthop Clin North Am 16(3):557–568

    PubMed  CAS  Google Scholar 

  24. Ruegsegger P, Dambacher MA, Ruegsegger E, Fischer JA, Anliker M (1984) Bone loss in premenopausal and postmenopausal women. J Bone Joint Surg 66-A:1015–1023

    Google Scholar 

  25. Ruegsegger P, Stebler B, Dambacher M (1982) Quantative computed tomography of bone. Mayo Clinic Proc 57(suppl):96–103

    Google Scholar 

  26. Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy Ann Intern Med 97:699–705

    PubMed  CAS  Google Scholar 

  27. Meier DE, Orwoll ES, Jones JM (1984) Marked disparity between trabecular and cortical bone loss with age in healthy men. Ann Intern Med 101: 605–612

    PubMed  CAS  Google Scholar 

  28. Ruegsegger P, Elsasser U, Anliker M, Gnehm H, Hanspeter K, Prader A (1976) Quantification of bone mineralization using computed tomography. Radiology 121:93–97

    PubMed  CAS  Google Scholar 

  29. Aitken JM, Smith CB, Horton PW, Boyd JF, Smith DA (1974) The interrelationships between bone mineral at different skeletal sites in male and female cadavera. J Bone Joint Surg 56-B:370–375

    Google Scholar 

  30. Jhamaria NL, Lal KB, Udawat M, Banerji P, Kabra SG (1983) The trabecular pattern of the calcaneum as an index of osteoporosis. J Bone Joint Surg 65-B:195–198

    Google Scholar 

  31. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67:328–335

    Article  PubMed  CAS  Google Scholar 

  32. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175

    Article  PubMed  CAS  Google Scholar 

  33. Wasnich RD, Ross PD, Helbrun LK, Vogel JM (1985) Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gynecol 153(7):745–751

    PubMed  CAS  Google Scholar 

  34. Wasnich RD, Ross PD, Heilbrun LK, Vogel JM (1987) Selection of the optimal skeletal site for fracture risk prediction. Clin Orthop 216:262–269

    PubMed  Google Scholar 

  35. Wilson CR (1977) Bone-mineral content of the femoral neck and spine versus the radius or ulna. J Bone Joint Surg 59-A: 665–669

    Google Scholar 

  36. Baran DT, Tettelbaum SI, Bergfeld MA, Parker G, Crubant EM, Avioli LV (1980) Effect of alcohol ingestion on bone and mineral metabolism in rats. Am J Physiol 238:E507-E510

    PubMed  CAS  Google Scholar 

  37. Daniell HW (1976) Osteoporosis of the slender smoker. Arch Intern Med 136:298–304

    Article  PubMed  CAS  Google Scholar 

  38. Nilsson BE (1970) Spinal osteoporosis and femoral neck fracture. Clin Orthop 68:93–95

    PubMed  CAS  Google Scholar 

  39. Simkin A, Ayalon J, Leichter I (1987) Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int 40:59–63

    PubMed  CAS  Google Scholar 

  40. Williams AR, Weiss NS, Ure CL, Ballard J, Daling JR (1982) Effect of weight, smoking, and estrogen use on the risk of hip and forearm fractures in postmenopausal women. J Obstet Gynecol 60:695–699

    CAS  Google Scholar 

  41. Cohn SH, Abesamis C, Yasumura S, Aloia JF, Zanzi I, Ellis KJ (1977) Comparative skeletal mass and radial bone mineral content in black and white women. Metabolims, 26(2):171–178

    CAS  Google Scholar 

  42. Gyepes M, Mellins HZ, Katz I (1972) The low incidence of fracture of the hip in the negro. JAMA 181(12):1073–1074

    Google Scholar 

  43. Mulder H, Hackeng WHL, Silberbusch J (1979) Racial differences in serum-calcitonin. Lancet ii:154

    Article  Google Scholar 

  44. Gallagher JC, Melton LJ, Riggs BL, Bergstrath E (1980) Epidemiology of fractures of the proximal femur in Rochester, Minnesota. Clin Orthop 150:163–171

    PubMed  Google Scholar 

  45. Seeman E, Melton LJ, O'Fallon WM, Riggs BL (1983) Risk factors for spinal osteoporosis in men. Am J Med 75:977–983

    Article  PubMed  CAS  Google Scholar 

  46. Van Hemert AM, Vandenbroucke JP, Birkenhage JC, Trouerbach WT, Valkenburg HA (1986) The quantification of risk factors for the development of osteoporosis and osteoporosis-related fractures in middle-aged women. Calcif Tissue Int 39(suppl): A17

    Google Scholar 

  47. Cann CE, Genant HK, Young DR (1980) Comparison of vertebral and peripheral mineral losses in disuse osteoporosis in monkeys. Radiology 134:525–529

    PubMed  CAS  Google Scholar 

  48. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4(4): 493–500

    Article  PubMed  CAS  Google Scholar 

  49. Cann CE, Genant HK, Ettinger B, Gordan GS (1980) Spinal mineral loss in oopherectomized women. JAMA 244(18): 2056–2059

    Article  PubMed  CAS  Google Scholar 

  50. Rosenthal DI, Ganott MA, Wyshak G, Slovik DM, Doppelt SH, Neer RM (1985) Quantitative computed tomography for spinal density measurement—factors affecting precision. Invest Radiol 20(3): 306–310

    Article  PubMed  CAS  Google Scholar 

  51. Laval-Jeantet AM, Roger B, Bouysee S, Bergot C, Mazess RB (1986) Influence of vertebral fat content on quantitative CT density. Radiology 159:463–466

    PubMed  CAS  Google Scholar 

  52. Laval-Jeantet AM, Cann CE, Roger B, Dallant P (1984) A postprocessing dual energy technique for vertebral CT densitometry. J Comput Assist Tomogr 8(6):1164–1167

    Article  PubMed  CAS  Google Scholar 

  53. Mayor GH, Garn SM, Sanchez TV, Shaw HA (1976) The need for differential bone mineral standards for blacks. Am J Roentgenol 126:1293–1294

    CAS  Google Scholar 

  54. Aaron JE, Gallagher JC, Anderson J, Stasiak L, Longton ER, Nordin BEC, Nicholson M (1974) Frequency of osteomalacia and osteoporosis in fractures of the proximal femur. Lancet i:229–233

    Article  Google Scholar 

  55. Mosekilde J, Mosekilde LE, Danielsen CC (1986). Age-related changes in vertebral trabecular bone mechanical competence in normal individuals. Calcif Tissue Int 39(suppl):A61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boden, S.D., Labropoulos, P. & Saunders, R. Hip fractures in young patients: Is this early osteoporosis?. Calcif Tissue Int 46, 65–72 (1990). https://doi.org/10.1007/BF02556089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556089

Key words

Navigation