Skip to main content
Log in

Long-term potassium citrate therapy and bone mineral density in idiopathic calcium stone formers

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Several authors have described an association between idiopathic calcium (Ca) stone disease and bone mass reduction. Hypocitraturia is a frequent feature of urolithiasis, and alkaline citrate has been recommended as one of the choice treatments in this disease. Some evidence exists as to the positive effect of potassium (K) citrate therapy on bone mass. The aim of this work was the longitudinal evaluation of bone mineral density (BMD) changes in a group of Ca oxalate stone formers treated with K citrate for two years. Enrolled patients were 120; 109 subjects completed the study (51 males and 58 females). A metabolic study and distal radius BMD measurements were conducted both at baseline (BAS) and at the end of the study (END). BMD (0.451±0.081 vs 0.490±0.080 g/cm2), T-score (−1.43±1.02 vs −0.90±1.04), net gastrointestinal alkali absorption (40.37±50.57 vs 61.26±42.26 mEq/day), urinary citrate (2.53±1.15 vs 3.10±1.44 mmol/day) and K (58.93±22.28 vs 65.45±23.97 mmol/day) excretion significantly increased from BAS to END. Urinary Ca excretion remained unchanged from BAS to END (5.16±2.74 vs 5.57±2.85 mmol/ day). Our results indicate that long-term treatment with K citrate increases forearm BMD in idiopathic Ca stone formers. It seems probable that the alkali load provided by this drug reduces bone resorption by a buffering of the endogenous acid production. K citrate appears to be a further therapeutic opportunity for the management of osteoporosis in Ca stone formers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bataille P, Achard JM, Fournier A, et al. Diet, vitamin D and vertebral mineral density in hypercalciuric calcium stone formers. Kidney Int 1991, 39: 1193–205.

    Article  PubMed  CAS  Google Scholar 

  2. Pietschmann F, Breslau NA, Pak CY. Reduced vertebral bone density in hypercalciuric nephrolithiasis. J Bone Miner Res 1992, 7: 1383–8.

    Article  PubMed  CAS  Google Scholar 

  3. Trinchieri A, Nespoli R, Ostini F, Rovera F, Zanetti G, Pisani E. A study of dietary calcium and other nutrients in idiopathic renal calcium stone formers with low bone mineral content. J Urol 1998, 159: 654–7.

    Article  PubMed  CAS  Google Scholar 

  4. Caudarella R, Vescini F, Buffa A, et al. Bone mass loss in calcium stone disease: focus on hypercalciuria and metabolic factors. J Nephrol 2003, 16: 260–6.

    PubMed  CAS  Google Scholar 

  5. Jaeger P, Lippuner K, Casez JP, Hess B, Ackermann D, Hug C. Low bone mass in idiopathic renal stone formers: magnitude and significance. J Bone Miner Res 1994, 9: 1525–32.

    Article  PubMed  CAS  Google Scholar 

  6. Weisinger JR. Bone loss in hypercalciuria: cause or consequence? Am J Kidney Dis 1999, 33: xlvi–xlviii.

    Article  PubMed  CAS  Google Scholar 

  7. Fuss M, Pepersack T, Van Geel J, et al. Involvement of low-calcium diet in the reduced bone mineral content of idiopathic renal stone formers. Calcif Tissue Int 1990, 46: 9–13.

    Article  PubMed  CAS  Google Scholar 

  8. Pacifici R. Idiopathic hypercalciuria and osteoporosis—distinct clinical manifestations of increased cytokine-induced bone resorption? J Clin Endocrinol Metab 1997, 82: 29–31.

    PubMed  CAS  Google Scholar 

  9. Giannini S, Nobile M, Sartori L, et al. Bone density and skeletal metabolism are altered in idiopathic hypercalciuria. Clin Nephrol 1998, 50: 94–100.

    PubMed  CAS  Google Scholar 

  10. Borghi L, Meschi T, Guerra A, et al. Vertebral mineral content in diet-dependent and diet-independent hypercalciuria. J Urol 1991, 146: 1334–8.

    PubMed  CAS  Google Scholar 

  11. Filipponi P, Mannarelli C, Pacifici R, et al. Evidence for a prostaglandin-mediated bone resorptive mechanism in subjects with fasting hypercalciuria. Calcif Tissue Int 1988, 43: 61–6.

    Article  PubMed  CAS  Google Scholar 

  12. Caudarella R, Vescini F, Buffa A, Stefoni S. Citrate and mineral metabolism: kidney stones and bone disease. Front Biosci 2003, 8: s1084–106.

    Article  PubMed  Google Scholar 

  13. Nicar MJ, Skurla C, Sakhaee K, Pak CY. Low urinary citrate excretion in nephrolithiasis. Urology 1983, 21: 8–14.

    Article  PubMed  CAS  Google Scholar 

  14. Pak CY. Citrate and renal calculi: an update. Miner Electrolyte Metab 1994, 20: 371–7.

    PubMed  CAS  Google Scholar 

  15. Ratan SK, Bhatnagar V, Mitra DK, Basu N, Malhotra LK. Urinary citrate excretion in idiopathic nephrolithiasis. Indian Pediatr 2002, 39: 819–25.

    PubMed  Google Scholar 

  16. Tiselius HG. Possibilities for preventing recurrent calcium stone formation: principles for the metabolic evaluation of patients with calcium stone disease. BJU Int 2001, 88: 158–68.

    Article  PubMed  CAS  Google Scholar 

  17. Dickens F. The citric acid content of animal tissues, with reference to its occurrence in bone and tumor. Biochem J 1941, 35: 1011–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Fournier A, Ghazali A, Bataille P, et al. Bone involvement in idiopathic calcium stone formers. In: Coe FL, Favus MJ, Pak CY, Parks JH, Preminger GM eds. Kidney stones: medical and surgical management. Philadelphia: Lippincot-Raven. 1996, 921–38.

    Google Scholar 

  19. Caudarella R, Miniero R, Rizzoli E, et al. Urinary citrate excretion in healthy women before and after menopause. Ital J Mineral Electrolyte Metab 1995, 9: 31–8.

    Google Scholar 

  20. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC, Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 1994, 330: 1776–81.

    Article  PubMed  CAS  Google Scholar 

  21. Sellmeyer DE, Schloetter M, Sebastian A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 2002, 87: 2008–12.

    Article  PubMed  CAS  Google Scholar 

  22. Pak CY, Peterson RD, Poindexter J. Prevention of spinal bone loss by potassium citrate in cases of calcium urolithiasis. J Urol 2002, 168: 31–4.

    Article  PubMed  Google Scholar 

  23. Marangella M, Di Stefano M, Casalis S, Berutti S, D’Amelio P, Isaia GC. Effects of potassium citrate supplementation on bone metabolism. Calcif Tissue Int 2004, 74: 330–5.

    Article  PubMed  CAS  Google Scholar 

  24. Hassager C, Borg J, Christiansen C. Measurement of the subcutaneous fat in the distal forearm by single photon absorptiometry. Metabolism 1989, 38: 159–65.

    Article  PubMed  CAS  Google Scholar 

  25. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 1994, 4: 368–81.

    Article  PubMed  CAS  Google Scholar 

  26. Lewiecki EM, Watts NB, McClung MR, et al. International Society for Clinical Densitometry. Official positions of the international society for clinical densitometry. J Clin Endocrinol Metab 2004, 89: 3651–5.

    Article  PubMed  CAS  Google Scholar 

  27. Gluer CC. Monitoring skeletal changes by radiological techniques. J Bone Miner Res 1999, 14: 1952–62.

    Article  PubMed  CAS  Google Scholar 

  28. Oh MS. A new method for estimating G-I absorption of alkali. Kidney Int 1989, 36: 915–7.

    Article  PubMed  CAS  Google Scholar 

  29. Alhava EM, Juuti M, Karjalainen P. Bone mineral density in patients with urolithiasis. A preliminary report. Scand J Urol Nephrol 1976, 10: 154–6.

    Article  PubMed  CAS  Google Scholar 

  30. Fuss M, Gillet C, Simon J, Vandewalle JC, Schoutens A, Bergmann P. Bone mineral content in idiopathic renal stone disease and in primary hyperparathyroidism. Eur Urol 1983, 9: 32–4.

    PubMed  CAS  Google Scholar 

  31. Bataille P, Charransol G, Gregoire I, et al. Effect of calcium restriction on renal excretion of oxalate and the probability of stones in the various pathophysiological groups with calcium stones. J Urol 1983, 130: 218–23.

    PubMed  CAS  Google Scholar 

  32. Lawoyin S, Sismilich S, Browne R, Pak CY. Bone mineral content in patients with calcium urolithiasis. Metabolism 1979, 28: 1250–4.

    Article  PubMed  CAS  Google Scholar 

  33. Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 1996, 271: F216–22.

    PubMed  CAS  Google Scholar 

  34. Alpern RJ. Endocrine control of acid-base balance. In: Fray JCS, Goodman HM eds. Handbook of physiology. Section 7. The endocrine system. Volume III: Endocrine regulation of water and electrolyte balance. New York: Oxford University Press. 2000, 570–603.

    Google Scholar 

  35. Pastoriza-Munoz E, Harrington RM, Graber ML. Parathyroid hormone decreases HCO3 reabsorption in the rat proximal tubule by stimulating phosphatidylinositol metabolism and inhibiting base exit. J Clin Invest 1992, 89: 1485–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Caudarella MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vescini, F., Buffa, A., La Manna, G. et al. Long-term potassium citrate therapy and bone mineral density in idiopathic calcium stone formers. J Endocrinol Invest 28, 218–222 (2005). https://doi.org/10.1007/BF03345376

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345376

Keywords

Navigation