Skip to main content
Log in

Expression of cysteine sulfinate decarboxylase (CSD) in male reproductive organs of mice

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Cysteine sulfinate decarboxylase (CSD) is the rate-limiting biosynthetic enzyme of taurine, but it is still controversial whether the male reproductive organs have the function to synthesize taurine through CSD pathway. The present study was thus undertaken to detect CSD expression in male mouse reproductive organs by RT-PCR, Western blot and immunohistochemistry. The results show that CSD is expressed both at the mRNA and protein levels in the testis, epididymis and ductus deferens. The relative levels of both CSD mRNA and protein increase from the testis to the epididymis and to the ductus deferens. Immunohistochemical results demonstrate that the main cell types containing CSD are Leydig cells of testis, epithelial cells and some stromal cells throughout the efferent ducts, epididymis and ductus deferens. These results suggest that male genital organs have the function to produce taurine through the CSD pathway, although quantifying the relation of CSD expression to taurine synthesis and the exact functions of taurine in male genital organs still need to be elucidated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamali HI, Hermo L (1996) Apical and narrow cells are distinct cell types differing in their structure, distribution and functions in the adult rat epididymis. J Androl 17:208–222

    PubMed  CAS  Google Scholar 

  • Alvarez JG, Storey BT (1983) Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod 29:548–555

    Article  PubMed  CAS  Google Scholar 

  • Boatman DE, Bavister DB, Cruz E (1990) Addition of hypotaurine can reactivate immotile golden hamster spermatozoa. J Androl 11:66–72

    PubMed  CAS  Google Scholar 

  • Chan-Palay V, Palay SL, Wu JY (1982) Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine-synthesizing enzyme cysteine sulfinic acid decarboxylase. Proc Natl Acad Sci 79:4221–4225

    Article  PubMed  CAS  Google Scholar 

  • Collins GG (1974) The rates of synthesis, uptake and disappearance of (14C)-taurine in eight areas of the rat central nervous system. Brain Res 76:447–459

    Article  PubMed  CAS  Google Scholar 

  • Cooke PS, Buchanan DL, Lubahn DB, Cunha GR (1998) Mechanism of estrogen action: lessons from the estrogen receptor-alpha knockout mouse. Biol Reprod 59:470–475

    Article  PubMed  CAS  Google Scholar 

  • Cooke PS, Buchanan DL, Young P, Setiawan T, Brody J, Korach KS, Taylor J, Lubahn DB, Cunha GR (1997) Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci USA 94:6535–6540

    Article  PubMed  CAS  Google Scholar 

  • Cooke PS, Uchima F-DA, Fujii DK, Bern HA, Cunha GR (1986) Restoration of normal morphology and estrogen responsiveness in cultured vaginal and uterine epithelia transplanted with stroma. Proc Natl Acad Sci USA 83:2109–2113

    Article  PubMed  CAS  Google Scholar 

  • Cunha G, Bigsby R, Cooke P, Sugimura Y (1985) Stromal-epithelial interactions in adult organs. Cell Differ17:137–148

    Google Scholar 

  • Ding WG, Tooyama I, Kimura H, Kuriyama K, Ochi J (1993) Distribution of taurine-like immunoreactivity in the mouse liver during ontogeny and after carbon tetrachloride or phenobarbital intoxication. Histochem J 25:376–383

    Article  PubMed  CAS  Google Scholar 

  • Fraser LR (1986) Both taurine and albumin support mouse sperm motility and fertilizing ability in vitro but there is no obligatory requirement for taurine. J Reprod Fertil 77:271–280

    Article  PubMed  CAS  Google Scholar 

  • Guérin P, Guillaud J, Ménézo Y (1995) Hypotaurine in spermatozoa and genital secretions and its production by oviduct epithelial cells in vitro. Hum Reprod 10:866–872

    PubMed  Google Scholar 

  • Guérin P, Ménézo Y (1995) Hypotaurine and taurine in gamete and embryo environments: de novo synthesis via cysteine sulfinic acid pathway in oviduct cells. Zygote 3:333–343

    Article  PubMed  Google Scholar 

  • Hernvann A, Gonzales J, Troupel S, Galli A (1986) Amino acid content of human semen in normal and infertility cases. Andrologia 18:461–469

    PubMed  CAS  Google Scholar 

  • Hinton BT (1990) The testicular and epididymal luminal amino acid microenvironment in the rat. J Androl 11:498–505

    PubMed  CAS  Google Scholar 

  • Holmes RP, Goodman HO, Hurst CH, Shihabi ZK, Jarow JP (1992a) Hypotaurine in male reproduction. Adv Exp Med Biol 315:437–441

    PubMed  CAS  Google Scholar 

  • Holmes RP, Goodman HO, Shihabi ZK, Jarrow JP (1992b) The taurine and hypotaurine content of human semen. J Androl 13:289–292

    PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:100–145

    Google Scholar 

  • Kaunisto K, Parkkila S, Parkkila AK, Waheed A, Sly WS, Rajaniemi H (1995) Expression of carbonic anhydrase isoenzyme IV and II in rat epididymal duct. Biol Reprod 52:350–1357

    Article  Google Scholar 

  • Lee IS, Renno WM, Beitz AJ (1992) A quantitative light and electron microscopic analysis of taurine-like immunoreactivity in the dorsal horn of the rat spinal cord. J Comp Neurol 321:65–82

    Article  PubMed  CAS  Google Scholar 

  • Lobo MVT, Alonso FJM, Latorre A, del Rio RM (2000) Immunohistochemical localization of taurine in the male reproductive organs of the rat. J Histochem Cytochem 48:313–320

    PubMed  CAS  Google Scholar 

  • Meizel S (1985) Molecules that initiate or help stimulate the acrosome reaction by their interaction with the mammalian sperm surface. Am J Anat 174:285–302

    Article  PubMed  CAS  Google Scholar 

  • Meizel S, Lui CW, Working PK, Mrsny RJ (1980) Taurine and hypotaurine: their effects on motility, capacitation and the acrosome reaction of hamster sperm in vitro and their presence in sperm and reproductive tract fluids of several mammals. Dev Growth Differ 22:483–494

    Article  CAS  Google Scholar 

  • Nagelhus EA, Lehmann A, Ottersen OP (1993) Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex. Neuroscience 54:615–631

    Article  PubMed  CAS  Google Scholar 

  • Oertel WH, Schmechel DE, Weise VK, Ranson DH, Tappaz M, Krutzsch HC, Kopin IJ (1981) Comparison of cysteine sulphinic acid decarboxylase isoenzymes and glutamic acid decarboxylase in rat liver and brain. Neuroscience 6:2701–2714

    Article  PubMed  CAS  Google Scholar 

  • Ozasa H, Gould KG (1982) Protective effect of taurine from osmotic stress on chimpanzee spermatozoa. Arch Androl 9:121–126

    Article  PubMed  CAS  Google Scholar 

  • Park E, Park SY, Wang C, Xu J, LaFauci G, Schuller-Levis G (2002) Cloning of murine cysteine sulfinic acid decarboxylase and its mRNA expression in murine tissues. Biochim Biophys Acta 1574:403–406

    PubMed  CAS  Google Scholar 

  • Prins GS, Birch L, Couse JF, Choi I, Katzenellenbogen B, Korach KS (2001) Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alphaERKO and betaERKO mice. Cancer Res 61:6089–6097

    PubMed  CAS  Google Scholar 

  • Quesada O, Lu P, Sturman A (1993) Taurine distribution in different cat muscles as visualized by immunohistochemistry: changes with stimulus state. Cytobios 73:143–154

    PubMed  CAS  Google Scholar 

  • Reymond I, Almarghini K, Tappaz M (1996) Immunohistochemical localization of cysteine sulfinate decarboxylase in astrocytes in the cerebellum and hippocampus: a quantitative double immunofluorescence study with glial fibrillary acidic protein and S-100 protein. Neuroscience 75:619–633

    Article  PubMed  CAS  Google Scholar 

  • Reymond I, Bitoun M, Levillain O, Tappaz M (2000) Regional expression and histological localization of cysteine sulfinate decarboxylase mRNA in the rat kidney. J Histochem Cytochem 48:1461–1468

    PubMed  CAS  Google Scholar 

  • Robaire B, Hermo L (1988) Efferent ducts, epididymis, and vas deferens: structure, functions, and their regulation. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 999–1080

    Google Scholar 

  • Robaire B, Viger RS (1995) Regulation of epididymal epithelial cell functions. Biol Reprod 52:226–236

    Article  PubMed  CAS  Google Scholar 

  • Tappaz ML (2004) Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res 29:83–96

    Article  PubMed  CAS  Google Scholar 

  • Trachtman H, Lu P, Sturman JA (1993) Immunohistochemical localization of taurine in rat renal tissue: studies in experimental disease states. J Histochem Cytochem 41:1209–1216

    PubMed  CAS  Google Scholar 

  • Velazquez A, Delgado NM, Rosado A (1986) Taurine content and amino acid composition of human acrosome. Life Sci 38:991–995

    Article  PubMed  CAS  Google Scholar 

  • Veri JP, Hermo L, Robaire B (1993) Immunocytochemical localization of the Yf subunit of glutathione S-transferase P shows regional variation in the staining of epithelial cells of the testis, efferent ducts, and epididymis of the male rat. J Androl 14:23–44

    PubMed  CAS  Google Scholar 

  • Wang H, Masironi B, Eriksson H, Sahlin L (1999) A comparative study of estrogen receptors α and β in the rat uterus. Biol Reprod 61:955–964

    Article  PubMed  CAS  Google Scholar 

  • Wu JY (1982) Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain. Proc Natl Acad Sci 79:4270–4274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants of the Natural Science Foundation for Outstanding Young Scientists of China(30325034)and the Natural Science Foundation of China (30471264). We thank Prof. Marcel Tappaz (Directeur de Recherche CNRS, INSERM U 433, Lyon University, France) for the kind gift of rabbit anti-CSD antiserum and for help and suggestions. We also thank Prof. Pierre Guérin (Ecole Nationale Vétérinaire Lyon, France), Dr. Nigel Wreford (Department of Anatomy, Monash University, Australia), Prof. Chesney RW, Drs. Andrea Patters and Han XB (University of Tennessee, Memphis, USA) for their helpful suggestions. We are grateful for critical comments on this manuscript by Professor Alan S McNeilly, MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, University of Edinburgh, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.H., Ling, Y.Q., Fan, J.J. et al. Expression of cysteine sulfinate decarboxylase (CSD) in male reproductive organs of mice. Histochem Cell Biol 125, 607–613 (2006). https://doi.org/10.1007/s00418-005-0095-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0095-8

Keywords

Navigation