Skip to main content

Advertisement

Log in

FGF23 production by osteocytes

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Fibroblast Growth Factor 23 (FGF23), a known regulator of phosphate homeostasis, is produced by cells residing in bone, namely, osteocytes, to target a distant organ, the kidney. Elevated FGF23 levels have recently been found systemically and in osteocytes in patients and animal models of chronic kidney disease. Associations between serum FGF23 level and vascular dysfunction, vascular calcification, and increased risk of cardiovascular disease have also been observed. In this review we discuss FGF23 expression in osteocytes and the potential means to regulate expression and function of this protein at the osteocyte level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parfitt AM (1977) The cellular basis of bone turnover and bone loss: A rebuttal of the osteocytic resorption–bone flow theory. Clin Orthop Relat Res 127:236–247

    PubMed  Google Scholar 

  2. Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149

    Article  PubMed  CAS  Google Scholar 

  3. Lanyon LE (1993) Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int 53:S102–S106, discussion S106-107

    Article  PubMed  Google Scholar 

  4. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238

    Article  PubMed  CAS  Google Scholar 

  5. Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498

    Article  PubMed  CAS  Google Scholar 

  6. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    PubMed  CAS  Google Scholar 

  7. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  PubMed  CAS  Google Scholar 

  8. Liu S, Bo Y, Xie Y, Zhou J, Quarles LD, Bonewald L, Feng JQ (2006) Elevated levels of FGF23 in Dentin Matrix Protein 1 (DMP1) Null Mice Potentially Explain Phenotypic Similarities to Hyp Mice. J BoneMin Res 21[Suppl 1]:S51

    Google Scholar 

  9. Liu S, Rowe PS, Vierthaler L, Zhou J, Quarles LD (2007) Phosphorylated acidic serine–aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. J Endocrinol 192:261–267

    Article  PubMed  CAS  Google Scholar 

  10. Pereira RC, Juppner H, Azucena-Serrano CE, Yadin O, Salusky IB, Wesseling-Perry K (2009) Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 45:1161–1168

    Article  PubMed  CAS  Google Scholar 

  11. Berndt T, Kumar R (2007) Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 69:341–359

    Article  PubMed  CAS  Google Scholar 

  12. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  PubMed  CAS  Google Scholar 

  13. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    PubMed  CAS  Google Scholar 

  14. Canalejo R, Canalejo A, Martinez-Moreno JM, Rodriguez-Ortiz ME, Estepa JC, Mendoza FJ, Munoz-Castaneda JR, Shalhoub V, Almaden Y, Rodriguez M (2010) FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 21:1125–1135

    Article  PubMed  CAS  Google Scholar 

  15. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M (2009) FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297:F282–F291

    Article  PubMed  CAS  Google Scholar 

  16. Gattineni J, Twombley K, Goetz R, Mohammadi M, Baum M (2011) Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol 301:F371–F377

    Article  PubMed  CAS  Google Scholar 

  17. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  18. Kuro-o M (2010) Klotho. Pflugers Arch 459:333–343

    Article  PubMed  CAS  Google Scholar 

  19. Bonewald L (2007) Osteocytes. In: Marcus DFR, Nelson D, Rosen C (eds) Osteoporosis. Elsevier, Amsterdam, pp 169–190.

    Google Scholar 

  20. [No authors listed] (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11:130–136.

    Google Scholar 

  21. Thompson DL, Sabbagh Y, Tenenhouse HS, Roche PC, Drezner MK, Salisbury JL, Grande JP, Poeschla EM, Kumar R (2002) Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res 17:311–320

    Article  PubMed  CAS  Google Scholar 

  22. Nampei A, Hashimoto J, Hayashida K, Tsuboi H, Shi K, Tsuji I, Miyashita H, Yamada T, Matsukawa N, Matsumoto M, Morimoto S, Ogihara T, Ochi T, Yoshikawa H (2004) Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J Bone Miner Metab 22:176–184

    Article  PubMed  CAS  Google Scholar 

  23. Rowe PS, Oudet CL, Francis F, Sinding C, Pannetier S, Econs MJ, Strom TM, Meitinger T, Garabedian M, David A, Macher MA, Questiaux E, Popowska E, Pronicka E, Read AP, Mokrzycki A, Glorieux FH, Drezner MK, Hanauer A, Lehrach H, Goulding JN, O’Riordan JL (1997) Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP). Hum Mol Genet 6:539–549

    Article  PubMed  CAS  Google Scholar 

  24. Strom TM, Francis F, Lorenz B, Boddrich A, Econs MJ, Lehrach H, Meitinger T (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 6:165–171

    Article  PubMed  CAS  Google Scholar 

  25. Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007

    Article  PubMed  CAS  Google Scholar 

  26. Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, Quarles LD (2011) Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 25:2551–2562

    Article  PubMed  CAS  Google Scholar 

  27. Rowe PS, Kumagai Y, Gutierrez G, Garrett IR, Blacher R, Rosen D, Cundy J, Navvab S, Chen D, Drezner MK, Quarles LD, Mundy GR (2004) MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34:303–319

    Article  PubMed  CAS  Google Scholar 

  28. Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge AM, Rowe PS (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772

    Article  PubMed  CAS  Google Scholar 

  29. Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: A model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46

    Article  PubMed  CAS  Google Scholar 

  30. Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE–ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: An inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649

    Article  PubMed  CAS  Google Scholar 

  31. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 291:E38–E49

    Article  PubMed  CAS  Google Scholar 

  32. Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF (2011) Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26:2634–2646

    Article  PubMed  CAS  Google Scholar 

  33. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T (2010) PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: A bone parathyroid feedback loop. Am J Physiol Renal Physiol 299:F882–F889

    Article  PubMed  CAS  Google Scholar 

  34. Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, Olivos N, Passeri G, O’Brien CA, Bivi N, Plotkin LI, Bellido T (2011) PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res 26:1035–1046

    Article  PubMed  CAS  Google Scholar 

  35. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179–3182

    Article  PubMed  CAS  Google Scholar 

  36. Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, Kuro-o M, Mohammadi M (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci USA 107:407–412

    Article  PubMed  CAS  Google Scholar 

  37. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ, Garringer HJ, Vidal R, Chan RJ, Goodwin CB, Hui SL, Peacock M, White KE (2011) Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci USA 108:E1146–E1155

    Article  PubMed  CAS  Google Scholar 

  38. Bhattacharyya N, Wiench M, Dumitrescu C, Connolly BM, Bugge TH, Patel HV, Gafni RI, Cherman N, Cho M, Hager GL, Collins MT (2012) Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res 27:1132–1141

    Article  PubMed  CAS  Google Scholar 

  39. Liu S, Zhou J, Tang W, Menard R, Feng JQ, Quarles LD (2008) Pathogenic role of Fgf23 in Dmp1-null mice. Am J Physiol Endocrinol Metab 295:E254–E261

    Article  PubMed  CAS  Google Scholar 

  40. Stubbs JR, He N, Idiculla A, Gillihan R, Liu S, David V, Hong Y, Quarles LD (2011) Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J Bone Miner Res. doi:10.1002/jbmr.516

  41. Marsell R, Mirza MA, Mallmin H, Karlsson M, Mellstrom D, Orwoll E, Ohlsson C, Jonsson KB, Ljunggren O, Larsson TE (2009) Relation between fibroblast growth factor-23, body weight and bone mineral density in elderly men. Osteoporos Int 20:1167–1173

    Article  PubMed  CAS  Google Scholar 

  42. Hsu HJ, Wu MS (2009) Fibroblast growth factor 23: A possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci 337:116–122

    Article  PubMed  Google Scholar 

  43. Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205:385–390

    Article  PubMed  CAS  Google Scholar 

  44. Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE (2009) Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 207:546–551

    Article  PubMed  CAS  Google Scholar 

  45. Gutierrez OM, Wolf M, Taylor EN (2011) Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin J Am Soc Nephrol 6:2871–2878

    Article  PubMed  CAS  Google Scholar 

  46. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    Article  PubMed  CAS  Google Scholar 

  47. Hughes SE (1997) Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochem Cytochem 45:1005–1019

    Article  PubMed  CAS  Google Scholar 

  48. Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, Lee JK, Kamiya K, Kitaichi K, Yamamoto K, Ito M, Kondo T, Iino S, Inden Y, Hirai M, Murohara T, Kodama I, Nabeshima Y (2004) Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109:1776–1782

    Article  PubMed  Google Scholar 

  49. Li H, Martin A, David V, Quarles LD (2011) Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab 300:E508–E517

    Article  PubMed  CAS  Google Scholar 

  50. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke HD, Choukroun G, Drueke TB, Massy ZA (2012) FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int 23:2017–2025

    Article  PubMed  CAS  Google Scholar 

  51. Dalal M, Sun K, Cappola AR, Ferrucci L, Crasto C, Fried LP, Semba RD (2011) Relationship of serum fibroblast growth factor 23 with cardiovascular disease in older community-dwelling women. Eur J Endocrinol 165:797–803

    Article  PubMed  CAS  Google Scholar 

  52. Stubbs JR, Egwuonwu S (2012) Is fibroblast growth factor 23 a harbinger of mortality in CKD? Pediatr Nephrol 27:697–703

    Article  PubMed  Google Scholar 

  53. Alon US (2011) Clinical practice. Fibroblast growth factor (FGF)23: A new hormone. Eur J Pediatr 170:545–554

    Article  PubMed  CAS  Google Scholar 

  54. Danziger J (2008) The bone-renal axis in early chronic kidney disease: An emerging paradigm. Nephrol Dial Transplant 23:2733–2737

    Article  PubMed  CAS  Google Scholar 

  55. de Borst MH, Vervloet MG, ter Wee PM, Navis G (2011) Cross talk between the renin–angiotensin–aldosterone system and vitamin D–FGF-23–klotho in chronic kidney disease. J Am Soc Nephrol 22:1603–1609

    Article  PubMed  Google Scholar 

  56. Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T (2009) Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res 24:1879–1888

    Article  PubMed  CAS  Google Scholar 

  57. Zhang R, Lu Y, Ye L, Yuan B, Yu S, Qin C, Xie Y, Gao T, Drezner MK, Bonewald LF, Feng JQ (2011) Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. J Bone Miner Res 26:1047–1056

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work was supported by NIH NIAMS AR046798 and NIH NIAMS RC2-AR058962.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda F. Bonewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonewald, L.F., Wacker, M.J. FGF23 production by osteocytes. Pediatr Nephrol 28, 563–568 (2013). https://doi.org/10.1007/s00467-012-2309-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2309-3

Keywords

Navigation