Skip to main content
Log in

Extracorporeal carbon dioxide removal (ECCO2R) in respiratory deficiency and current investigations on its improvement: a review

  • Review
  • Artificial Lung / ECMO
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The implementation of extracorporeal carbon dioxide removal (ECCO2R) as one of the extracorporeal life support system is getting more attention today. Thus, the objectives of this paper are to study the clinical practice of commercial ECCO2R system, current trend of its development and also the perspective on future improvement that can be done to the existing ECCO2R system. The strength of this article lies in its review scope, which focuses on the commercial ECCO2R therapy in the market based on membrane lung and current investigation to improve the efficiency of the ECCO2R system, in terms of surface modification by carbonic anhydrase (CA) immobilization technique and respiratory electrodialysis (R-ED). Our methodology approach involves the identification of relevant published literature from PubMed and Web of Sciences search engine using the terms Extracorporeal Carbon Dioxide Removal (ECCO2R), Extracorporeal life support, by combining terms between ECCO2R and CA and also ECCO2R with R-ED. This identification only limits articles in English language. Overall, several commercial ECCO2R systems are known and proven safe to be used in patients in terms of efficiency, safety and risk of complication. In addition, CA-modified hollow fiber for membrane lung and R-ED are proven to have good potential to be applied in conventional ECCO2R design. The detailed technique and current progress on CA immobilization and R-ED development were also reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Cove et al. [24]

Fig. 2

Adapted from Gramaticopolo et al. [48]

Fig. 3

Adapted from Batchinsky et al. [55]

Fig. 4
Fig. 5

Adapted from Hout et al. [106]

Similar content being viewed by others

References

  1. Ambrosino N, Foglio K, Rubini F, Clini E, Nava S, Vitacca M. Non-invasive mechanical ventilation in acute respiratory failure due to chronic obstructive pulmonary disease: correlates for success. Thorax. 1995;50:755–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Confalonieri M, Parigi P, Scartabellati A, Aiolfi S, Scorsetti S, Nava S, et al. Noninvasive mechanical ventilation improves the immediate and long-term outcome of COPD patients with acute respiratory failure. Eur Respir J. 1996;9:422–30.

    Article  CAS  PubMed  Google Scholar 

  3. Plant PK, Owen JL, Elliott MW. Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet. 2000;355:1931–5.

    Article  CAS  PubMed  Google Scholar 

  4. Tomii K, Seo R, Tachikawa R, Harada Y, Murase K, Kaji R, et al. Impact of noninvasive ventilation (NIV) trial for various types of acute respiratory failure in the emergency department; decreased mortality and use of the ICU. Respir Med. 2009;103:67–73.

    Article  PubMed  Google Scholar 

  5. Zimmerman JL, Dellinger RP, Shah AN, Taylor RW. Endotracheal intubation and mechanical ventilation in severe asthma. Crit Care Med. 1993;21:1727–30.

    Article  CAS  PubMed  Google Scholar 

  6. Drolet P, Girard M, Poirier J, Grenier Y. Facilitating submental endotracheal intubation with an endotracheal tube exchanger. Anesth Analg. 2000;90:222–3.

    Article  CAS  PubMed  Google Scholar 

  7. Luksza AR, Smith P, Coakley J, Gordan IJ, Atherton ST. Acute severe asthma treated by mechanical ventilation: 10 years’ experience from a district general hospital. Thorax. 1986;41:459–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neto AS, Filho RR, Rocha LL, Schultz MJ. Recent advances in mechanical ventilation in patients without acute respiratory distress syndrome. F1000Prime Rep. 2014;6:115.

    Google Scholar 

  9. Raoof S, Goulet K, Esan A, Hess DR, Sessler CN. Severe hypoxemic respiratory failure: part 2—nonventilatory strategies. Chest J. 2010;137:1437–48.

    Article  Google Scholar 

  10. Fica M, Suarez F, Aparicio R, Suarez C. Single site venovenous extracorporeal membrane oxygenation as an alternative to invasive ventilation in post-pneumonectomy fistula with acute respiratory failure. Eur J Cardiothorac Surg. 2012;41:950–2.

    Article  PubMed  Google Scholar 

  11. Lobaz S, Carey M. Rescue of acute refractory hypercapnia and acidosis secondary to life-threatening asthma with extracorporeal Carbon Dioxide removal (ECCO2R). J Intensive Care Soc. 2011;12:140–2.

    Article  Google Scholar 

  12. Pego-Fernandes PM, Hajjar LA, Galas FR, Samano MN, Ribeiro AK, Park M, et al. Respiratory failure after lung transplantation: extra-corporeal membrane oxygenation as a rescue treatment. Clinics. 2012;67:1529–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hill JD, O’Brien TG, Murray JJ, Dontigny L, Bramson ML, Osborn JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286:629–34.

    Article  CAS  PubMed  Google Scholar 

  14. Bartlett RH, Gazzaniga AB, Jefferies MR, Huxtable RF, Haiduc NJ, Fong SW. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans Am Soc Artif Intern Organs. 1976;22:80–93.

    CAS  PubMed  Google Scholar 

  15. Chauhan S, Subin S. Extracorporeal membrane oxygenation, an anesthesiologist’s perspective: physiology and principles. Part 1. Ann Card Anaesth. 2011;14:218–29.

    Article  PubMed  Google Scholar 

  16. Kluge S, Braune SA, Engel M, Nierhaus A, Frings D, Ebelt H, et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med. 2012;38:1632–9.

    Article  PubMed  Google Scholar 

  17. Fuehner T, Kuehn C, Hadem J, Wiesner O, Gottlieb J, Tudorache I, et al. Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am J Respir Crit Care Med. 2012;185:763–8.

    Article  PubMed  Google Scholar 

  18. Bermudez CA, Rocha RV, Zaldonis D, Bhama JK, Crespo MM, Shigemura N, et al. Extracorporeal membrane oxygenation as a bridge to lung transplant: midterm outcomes. Ann Thorac Surg. 2011;92:1226–31.

    Article  PubMed  Google Scholar 

  19. Muller T, Philipp A, Luchner A, Karagiannidis C, Bein T, Hilker M, et al. A new miniaturized system for extracorporeal membrane oxygenation in adult respiratory failure. Crit Care. 2009;13:R205.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aubron C, Cheng AC, Pilcher D, Leong T, Magrin G, Cooper DJ, et al. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: a 5-year cohort study. Crit Care. 2013;17:R73.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hervey-Jumper SL, Annich GM, Yancon AR, Garton HJ, Muraszko KM, Maher CO. Neurological complications of extracorporeal membrane oxygenation in children. J Neurosurg Pediatr. 2011;7:338–44.

    Article  PubMed  Google Scholar 

  22. Chen YC, Tsai FC, Fang JT, Yang CW. Acute kidney injury in adults receiving extracorporeal membrane oxygenation. J Formos Med Assoc. 2014;113:778–85.

    Article  PubMed  Google Scholar 

  23. Lund LW, Federspiel WJ. Removing extra CO2 in COPD patients. Curr Respir Care Rep. 2013;2:131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cove ME, MacLaren G, Federspiel WJ, Kellum JA. Bench to bedside review: extracorporeal carbon dioxide removal, past present and future. Crit Care. 2012;16:232–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gattinoni L, Pesenti A, Mascheroni D, Marcolin R, Fumagalli R, Rossi F, et al. Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA. 1986;256:881–6.

    Article  CAS  PubMed  Google Scholar 

  26. Kolobow T, Gattinoni L, Tomlinson T, Pierce JE. An alternative to breathing. J Thorac Cardiovasc Surg. 1978;75:261–6.

    CAS  PubMed  Google Scholar 

  27. Terragni PP, Birocco A, Faggiano C, Ranieri VM. Extracorporeal CO2 removal. Contrib Nephrol. 2010;165:185–96.

    Article  PubMed  Google Scholar 

  28. Chang BS, Garella S. Complete extracorporeal removal of metabolic carbon dioxide by alkali administration and dialysis in apnea. Int J Artif Organs. 1983;6:295–8.

    CAS  PubMed  Google Scholar 

  29. Gille JP, Saunier C, Schrijen F, Hartemann D, Tousseul B. Metabolic CO2 removal by dialysis: THAM vs NaOH infusion. Int J Artif Organs. 1989;12:720–7.

    CAS  PubMed  Google Scholar 

  30. Nolte SH, Jonitz WJ, Grau J, Roth H, Assenbaum ER. Hemodialysis for extracorporeal bicarbonate/CO2 removal (ECBicCO2R) and apneic oxygenation for respiratory failure in the newborn. Theory and preliminary results in animal experiments. ASAIO J. 1989;35:30–4.

    CAS  Google Scholar 

  31. Isobe J, Mizuno H, Matsunobe S, Shimizu Y, Ikada Y, Kishida A. A new type of low blood flow ECCO2R using a hemodialysis system in apneic states. ASAIO Trans. 1989;35:638–9.

    Article  CAS  PubMed  Google Scholar 

  32. Salley SO, Song JY, Whittlesey GC, Klein MD. Immobilized carbonic anhydrase in a membrane lung for enhanced CO2 removal. ASAIO Trans. 1990;36:M486–90.

    CAS  PubMed  Google Scholar 

  33. National Institute for Health and Clnical Excellent (NICE). International procedure overview of extracorporeal membrane carbon dioxide removal. London: National Institute for Health and Clnical Excellent; 2011.

  34. Federspiel WJ, Svitek RG. Lung, artificial: current research and future directions. Encyclopedia of biomaterials and biomedical engineering, second edition (online version). Boca Raton, US: CRC press; 2008. p. 1673–82. doi:10.1201/b18990-160.

    Google Scholar 

  35. Kim EJ, Cho WH, Ahn EY, Ryu DG, Lee SE, Jeon DS, et al. Thrombotic complications during interventional lung assist: case series. Tuberc Respir Dis. 2015;78:18–22.

    Article  Google Scholar 

  36. Matheis G. New technologies for respiratory assist. Perfusion. 2003;18:245–51.

    Article  PubMed  Google Scholar 

  37. Walles T. Clinical experience with the iLA membrane ventilator pumpless extracorporeal lung-assist device. Expert Rev Med Device. 2007;4:297–305.

    Article  Google Scholar 

  38. Toomasian JM, Schreiner RJ, Meyer DE, Schmidt ME, Hagan SE, Griffith GW, et al. A polymethylpentene fiber gas exchanger for long-term extracorporeal life support. ASAIO J. 2005;51:390–7.

    Article  CAS  PubMed  Google Scholar 

  39. Bein T, Weber F, Philipp A, Prasser C, Pfeifer M, Schmid FX, et al. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med. 2006;34:1372–7.

    Article  PubMed  Google Scholar 

  40. Florchinger B, Philipp A, Klose A, Hilker M, Kobuch R, Rupprecht L, et al. Pumpless extracorporeal lung assist: a 10-year institutional experience. Ann Thorac Surg. 2008;86:410–7.

    Article  PubMed  Google Scholar 

  41. Johnson P, Frohlich S, Westbrook A. Use of extracorporeal membrane lung assist device (Novalung) in H1N1 patients. J Card Surg. 2011;26:449–52.

    Article  PubMed  Google Scholar 

  42. Muller T, Lubnow M, Philipp A, Bein T, Jeron A, Luchner A, et al. Extracorporeal pumpless interventional lung assist in clinical practice: determinants of efficacy. Eur Respir J. 2009;33:551–8.

    Article  CAS  PubMed  Google Scholar 

  43. Elliot SC, Paramasivam K, Oram J, Bodenham AR, Howell SJ, Mallick A. Pumpless extracorporeal carbon dioxide removal for life-threatening asthma. Crit Care Med. 2007;35:945–8.

    Article  PubMed  Google Scholar 

  44. Zimmermann M, Philipp A, Schmid FX, Dorlac W, Arlt M, Bein T. From Baghdad to Germany: use of a new pumpless extracorporeal lung assist system in two severely injured US soldiers. ASAIO J. 2007;53:e4–6.

    Article  PubMed  Google Scholar 

  45. Fischer S, Simon AR, Welte T, Hoeper MM, Meyer A, Tessmann R, et al. Bridge to lung transplantation with the novel pumpless interventional lung assist device NovaLung. J Thorac Cardiovasc Surg. 2006;131:719–23.

    Article  PubMed  Google Scholar 

  46. Bartosik W, Egan JJ, Wood AE. The Novalung interventional lung assist as bridge to lung transplantation for self-ventilating patients-initial experience. Interact Cardiovasc Thorac Surg. 2011;13:198–200.

    Article  PubMed  Google Scholar 

  47. Hermann A, Staudinger T, Bojic A, Riss K, Wohlfarth P, Robak O, et al. First experience with a new miniaturized pump-driven venovenous extracorporeal CO2 removal system (iLA Activve): a retrospective data analysis. ASAIO J. 2014;60:342–7.

    Article  CAS  PubMed  Google Scholar 

  48. Gramaticopolo S, Chronopoulos A, Piccinni P, Nalesso F, Brendolan A, Zanella M, et al. Extracorporeal CO2 removal–a way to achieve ultraprotective mechanical ventilation and lung support: the missing piece of multiple organ support therapy. Contrib Nephrol. 2010;165:174–84.

    Article  PubMed  Google Scholar 

  49. Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. J Am Soc Anesthesiol. 2009;111:826–35.

    Article  Google Scholar 

  50. Forster C, Schriewer J, John S, Eckardt KU, Willam C. Low-flow CO2 removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements. Crit Care. 2013;17:R154.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Iacovazzi M, Oreste N, Sardelli P, Barrettara B, Grasso S. Extracorporeal carbon dioxyde removal for additional pulmonary resection after pneumonectomy. Min Anestesiol. 2012;78:381–4.

    CAS  Google Scholar 

  52. Ruberto F, Pugliese F, D’Alio A, Perrella S, D’Auria B, Ianni S, et al. Extracorporeal removal CO2 using a venovenous, low-flow system (Decapsmart) in a lung transplanted patient: a case report. Transplant Proc. 2009;41:1412–4.

    Article  CAS  PubMed  Google Scholar 

  53. Ricci D, Boffini M, Del Sorbo L, El Qarra S, Comoglio C, Ribezzo M, et al. The use of CO2 removal devices in patients awaiting lung transplantation: an initial experience. Transplant Proc. 2010;42:1255–8.

    Article  CAS  PubMed  Google Scholar 

  54. Wearden PD, Federspiel WJ, Morley SW, Rosenberg M, Bieniek PD, Lund LW, et al. Respiratory dialysis with an active-mixing extracorporeal carbon dioxide removal system in a chronic sheep study. Intensive Care Med. 2012;38:1705–11.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel W, Morris M, et al. Veno-venous extracorporeal CO2 removal: can we reduce dependence on mechanical ventilation during en-route care? RTO Human Factors and Medicine Panel (HFM) Symposium. Essen, Germany. 2010.

  56. Burki NK, Mani RK, Herth FJ, Schmidt W, Teschler H, Bonin F, et al. A novel extracorporeal CO2 removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest J. 2013;143:678–86.

    Article  CAS  Google Scholar 

  57. Bonin F, Sommerwerck U, Lund LW, Teschler H. Avoidance of intubation during acute exacerbation of chronic obstructive pulmonary disease for a lung transplant candidate using extracorporeal carbon dioxide removal with the Hemolung. J Thorac Cardiovasc Surg. 2013;145:e43–4.

    Article  PubMed  Google Scholar 

  58. Cole S, Barrett NA, Glover G, Langrish CI, Meadows C, Daly K, et al. Extracorporeal carbon dioxide removal as an alternative to endotracheal intubation for non-invasive ventilation failure in acute exacerbation of COPD. J Intensive Care Soc. 2014;15:344–6.

    Article  Google Scholar 

  59. Zanella A, Patroniti N, Isgro S, Albertini M, Costanzi M, Pirrone F, et al. Blood acidification enhances carbon dioxide removal of membrane lung: an experimental study. Intensive Care Med. 2009;35:1484–7.

    Article  CAS  PubMed  Google Scholar 

  60. Mortensen JD. Intravascular oxygenator: a new alternative method for augmenting blood gas transfer in patients with acute respiratory failure. Artif Organs. 1992;16:75–82.

    Article  CAS  PubMed  Google Scholar 

  61. Tao W, Schroeder T, Bidani A, Cardenas VJ Jr, Nguyen PD, Bradford DW, et al. Improved gas exchange performance of the intravascular oxygenator by active blood mixing. ASAIO J. 1994;40:M527–32.

    Article  CAS  PubMed  Google Scholar 

  62. Federspiel WJ, Hout MS, Hewitt TJ, Lund LW, Heinrich SA, Litwak P, et al. Development of a low flow resistance intravenous oxygenator. ASAIO J. 1997;43:M725–30.

    Article  CAS  PubMed  Google Scholar 

  63. Hattler BG, Lund LW, Golob J, Russian H, Lann MF, Merrill TL, et al. A respiratory gas exchange catheter: in vitro and in vivo tests in large animals. J Thorac Cardiovasc Surg. 2002;124:520–30.

    Article  PubMed  Google Scholar 

  64. Mihelc KM, Frankowski BJ, Lieber SC, Moore ND, Hattler BG, Federspiel WJ. Evaluation of a respiratory assist catheter that uses an impeller within a hollow fiber membrane bundle. ASAIO J. 2009;55:569–74.

    Article  PubMed  Google Scholar 

  65. Scaravilli V, Kreyer S, Linden K, Belenkiy S, Jordan B, Pesenti A, et al. Modular extracorporeal life support: effects of ultrafiltrate recirculation on the performance of an extracorporeal carbon dioxide removal device. ASAIO J. 2014;60:335–41.

    Article  CAS  PubMed  Google Scholar 

  66. Oh HI, Ye SH, Johnson CA Jr, Woolley JR, Federspiel WJ, Wagner WR. Hemocompatibility assessment of carbonic anhydrase modified hollow fiber membranes for artificial lungs. Artif Organs. 2010;34:439–42.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Broun G, Selegny E, Minh CT, Thomas D. Facilitated transport of CO2 across a membrane bearing carbonic anhydrase. Febs Lett. 1970;7:223–6.

    Article  CAS  PubMed  Google Scholar 

  68. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th ed. New York: W H Freeman; 2002.

    Google Scholar 

  69. Gilmour KM. Perspectives on carbonic anhydrase. Comp Biochem Physiol A: Mol Integr Physiol. 2010;157:193–7.

    Article  CAS  Google Scholar 

  70. Uchikawa J, Zeebe RE. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2–H2O system: implications for δ18O vital effects in biogenic carbonates. Geochim Cosmochim Acta. 2012;95:15–34.

    Article  CAS  Google Scholar 

  71. Rhoades R, Bell DR. Medical physiology: principles for clinical medicine. Philadelphia, USA: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  72. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80:681–715.

    CAS  PubMed  Google Scholar 

  73. Chegwidden WR, Carter ND, Edwards YH. The carbonic anhydrases: new horizons. Basel: Birkhäuser; 2013.

    Google Scholar 

  74. Supuran CT, De Simone G. Carbonic anhydrases as biocatalysts: from theory to medical and industrial applications. Waltham, MA, USA: Elsevier; 2015.

    Google Scholar 

  75. Yong JKJ, Stevens GW, Caruso F, Kentish SE. The use of carbonic anhydrase to accelerate carbon dioxide capture processes. J Chem Technol Biotechnol. 2015;90:3–10.

    Article  CAS  Google Scholar 

  76. Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997;74:1–20.

    Article  CAS  PubMed  Google Scholar 

  77. Tripp BC, Smith K, Ferry JG. Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem. 2001;276:48615–8.

    Article  CAS  PubMed  Google Scholar 

  78. Arthurs G, Sudhakar M. Carbon dioxide transport. Contin Educ Anaesth, Crit Care Pain. 2005;5:207–10.

    Article  Google Scholar 

  79. Majumdar S, Guha AK, Sirkar KK. A new liquid membrane technique for gas separation. AIChE J. 1988;34:1135–45.

    Article  CAS  Google Scholar 

  80. Cowan RM, Ge JJ, Qin YJ, McGregor ML, Trachtenberg MC. CO2 capture by means of an enzyme-based reactor. Ann N Y Acad Sci. 2003;984:453–69.

    Article  CAS  PubMed  Google Scholar 

  81. Carroll RH, Barber TA, Reed BW. Liquid membrane modules with minimal effective membrane thickness and methods of making the same. Google Patents 1992.

  82. Trachtenberg MC, Cowan RM, Smith DA, Horazak DA, Jensen MD, Laumb JD, et al. Membrane-based, enzyme-facilitated, efficient carbon dioxide capture. Energy Procedia. 2009;1:353–60.

    Article  CAS  Google Scholar 

  83. Bao LH, Goldman SL, Trachtenberg MC. CO2 transfer across a liquid membrane facilitated by carbonic anhydrase. AIChE Annual Meeting. Austin, Texas 2004.

  84. Zhang Y-T, Zhang L, Chen H-L, Zhang H-M. Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chem Eng Sci. 2010;65:3199–207.

    Article  CAS  Google Scholar 

  85. Yadav R, Wanjari S, Prabhu C, Kumar V, Labhsetwar N, Satyanarayanan T, et al. Immobilized carbonic anhydrase for the biomimetic carbonation reaction. Energy Fuels. 2010;24:6198–207.

    Article  CAS  Google Scholar 

  86. Vinoba M, Bhagiyalakshmi M, Jeong SK, Yoon YI, Nam SC. Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2. Colloids Surf B Biointerfaces. 2012;90:91–6.

    Article  CAS  PubMed  Google Scholar 

  87. Sahoo PC, Jang Y-N, Lee S-W. Immobilization of carbonic anhydrase and an artificial Zn(II) complex on a magnetic support for biomimetic carbon dioxide sequestration. J Mol Catal B Enzym. 2012;82:37–45.

    Article  CAS  Google Scholar 

  88. Kaar JL, Oh H-I, Russell AJ, Federspiel WJ. Towards improved artificial lungs through biocatalysis. Biomaterials. 2007;28:3131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Arazawa DT, Oh HI, Ye SH, Johnson CA Jr, Woolley JR, Wagner WR, et al. Immobilized carbonic anhydrase on hollow fiber membranes accelerates CO2 removal from blood. J Memb Sci. 2012;404:25–31.

    Article  PubMed  CAS  Google Scholar 

  90. Kimmel JD, Arazawa DT, Ye SH, Shankarraman V, Wagner WR, Federspiel WJ. Carbonic anhydrase immobilized on hollow fiber membranes using glutaraldehyde activated chitosan for artificial lung applications. J Mater Sci Mater Med. 2013;24:2611–21.

    Article  CAS  PubMed  Google Scholar 

  91. Kanbar B, Ozdemir E. Thermal stability of carbonic anhydrase immobilized within polyurethane foam. Biotechnol Prog. 2010;26:1474–80.

    Article  CAS  PubMed  Google Scholar 

  92. Arazawa DT, Kimmel JD, Finn MC, Federspiel WJ. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood. Acta Biomater. 2015;25:143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zanella A, Castagna L, Salerno D, Scaravilli V, El Aziz Abd, El Sayed Deab S, Magni F, et al. Respiratory electrodialysis. A novel, highly efficient extracorporeal CO2 removal technique. Am J Respir Crit Care Med. 2015;192:719–26.

    Article  CAS  PubMed  Google Scholar 

  94. Zanella A, Mangili P, Redaelli S, Scaravilli V, Giani M, Ferlicca D, et al. Regional blood acidification enhances extracorporeal carbon dioxide removal: a 48-hour animal study. J Am Soc Anesthesiol. 2014;120:416–24.

    Article  CAS  Google Scholar 

  95. Zanella A, Mangili P, Giani M, Redaelli S, Scaravilli V, Castagna L, et al. Extracorporeal carbon dioxide removal through ventilation of acidified dialysate: an experimental study. J Heart Lung Transplant. 2014;33:536–41.

    Article  PubMed  Google Scholar 

  96. Zanella A, Castagna L, El Aziz Abd, El Sayed Deab S, Scaravilli V, Ferlicca D, Magni F, et al. Extracorporeal CO2 removal by respiratory electrodialysis: an in vitro study. ASAIO J. 2016;62:143–9.

    CAS  PubMed  Google Scholar 

  97. Aravantagi A, Patra KP, Shekar S, Scott LK. Pumpless arteriovenous carbon dioxide removal: a novel simplified strategy for severe asthma in children. Indian J Crit Care Med. 2011;15:224–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abrams DC, Brenner K, Burkart KM, Agerstrand CL, Thomashow BM, Bacchetta M, et al. Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013;10:307–14.

    Article  CAS  PubMed  Google Scholar 

  99. Karagiannidis C, Kampe KA, Sipmann FS, Larsson A, Hedenstierna G, Windisch W, et al. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations. Crit Care. 2014;18:R124.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brunston RL Jr, Zwischenberger JB, Tao W, Cardenas VJ Jr, Traber DL, Bidani A. Total arteriovenous CO2 removal: simplifying extracorporeal support for respiratory failure. Ann Thorac Surg. 1997;64:1599–604.

    Article  PubMed  Google Scholar 

  101. Zwischenberger JB, Conrad SA, Alpard SK, Grier LR, Bidani A. Percutaneous extracorporeal arteriovenous CO2 removal for severe respiratory failure. Ann Thorac Surg. 1999;68:181–7.

    Article  CAS  PubMed  Google Scholar 

  102. Zhou X, Loran DB, Wang D, Hyde BR, Lick SD, Zwischenberger JB. Seventy-two hour gas exchange performance and hemodynamic properties of NOVALUNG iLA as a gas exchanger for arteriovenous carbon dioxide removal. Perfusion. 2005;20:303–8.

    Article  PubMed  Google Scholar 

  103. Richard C, Argaud L, Blet A, Boulain T, Contentin L, Dechartres A, et al. Extracorporeal life support for patients with acute respiratory distress syndrome: report of a consensus conference. Ann Intensive Care. 2014;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Extracorporeal Life Support Organization (ELSO). General Guidelines for all ECLS Cases. https://www.elso.org/Portals/0/IGD/Archive/FileManager/929122ae88cusersshyerdocumentselsoguidelinesgeneralalleclsversion1.3.pdf. 2013. Accessed 10 Sept 2015.

  105. Federspiel WJ, Hattler BG. Sweep gas flowrate and CO2 exchange in artificial lungs. Artif Organs. 1996;20:1050–2.

    Article  CAS  PubMed  Google Scholar 

  106. Hout MS, Hattler BG, Federspiel WJ. Validation of a model for flow-dependent carbon dioxide exchange in artificial lungs. Artif Organs. 2000;24:114–8.

    Article  CAS  PubMed  Google Scholar 

  107. Turri F, Yanagihara JI. Computer-assisted numerical analysis for oxygen and carbon dioxide mass transfer in blood oxygenators. Artif Organs. 2011;35:579–92.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the University of Malaya Research Grant (UMRG), No: RP015-2012G, Department of Biomedical Engineering, University of Malaya, Malaysia. The University of Malaya Fellowship Scheme (SBUM) award for the first author (HHM) is highly acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Khairi Abdul Wahab.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest relevant to the subjects of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manap, H.H., Abdul Wahab, A. Extracorporeal carbon dioxide removal (ECCO2R) in respiratory deficiency and current investigations on its improvement: a review. J Artif Organs 20, 8–17 (2017). https://doi.org/10.1007/s10047-016-0905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-016-0905-x

Keywords

Navigation