Skip to main content

Advertisement

Log in

Roles of cardiac sympathetic neuroimaging in autonomic medicine

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Sympathetic neuroimaging is based on the injection of compounds that either radiolabel sites of the cell membrane norepinephrine transporter (NET) or that are taken up into sympathetic nerves via the NET and radiolabel intra-neuronal catecholamine storage sites. Detection of the radioactivity is by planar or tomographic radionuclide imaging. The heart stands out among body organs in terms of the intensity of radiolabeling of sympathetic nerves, and virtually all of sympathetic neuroimaging focuses on the left ventricular myocardium. The most common cardiac sympathetic neuroimaging method worldwide is 123I-metaiodobenzylguanidine (123I-MIBG) scanning. 123I-MIBG scanning is used routinely in Europe and East Asia in the diagnostic evaluation of neurogenic orthostatic hypotension (nOH), to distinguish Lewy body diseases (e.g., Parkinson disease with orthostatic hypotension (OH), pure autonomic failure) from non-Lewy body diseases (e.g., multiple system atrophy) and to distinguish dementia with Lewy bodies from Alzheimer’s disease. In the USA, 123I-MIBG scanning has been approved by the Food and Drug Administration for the evaluation of pheochromocytoma and some forms of heart failure—but not for the above-mentioned differential diagnoses. Positron emission tomographic methods based on imaging agents such as 18F-dopamine are categorized as research tools, despite more than a quarter century of clinical experience with these modalities. Considering that 123I-MIBG scanning is available at most academic medical centers in the USA, cardiac sympathetic neuroimaging by this methodology merits consideration as an autonomic test, especially in patients with nOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Figure reproduced with permission of P. Borghammer

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbasi M, Ghalandari N, Farzanefar S, Aghamollaii V, Ahmadi M, Ganji M, Afarideh M, Loloee S, Naseri M, Tafakhori A (2017) Potential diagnostic value of (131)I-MIBG myocardial scintigraphy in discrimination between Alzheimer disease and dementia with Lewy bodies. Clin Neurol Neurosurg 163:163–166

    Article  PubMed  Google Scholar 

  2. Agostini D, Babatasi G, Manrique A, Saloux E, Grollier G, Potier JC, Bouvard G (1998) Impairment of cardiac neuronal function in acute myocarditis: iodine-123-MIBG scintigraphy study. J Nucl Med 39:1841–1844

    PubMed  CAS  Google Scholar 

  3. Agostini D, Belin A, Amar MH, Darlas Y, Hamon M, Grollier G, Potier JC, Bouvard G (2000) Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J Nucl Med 41:845–851

    PubMed  CAS  Google Scholar 

  4. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T (2008) Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation 118:2754–2762

    Article  PubMed  PubMed Central  Google Scholar 

  5. Akashi YJ, Nakazawa K, Sakakibara M, Miyake F, Musha H, Sasaka K (2004) 123I-MIBG myocardial scintigraphy in patients with “takotsubo” cardiomyopathy. J Nucl Med 45:1121–1127

    PubMed  Google Scholar 

  6. Akashi YJ, Nakazawa K, Sakakibara M, Miyake F, Sasaka K (2002) Reversible left ventricular dysfunction “takotsubo” cardiomyopathy related to catecholamine cardiotoxicity. J Electrocardiol 35:351–356

    Article  PubMed  Google Scholar 

  7. Algalarrondo V, Antonini T, Theaudin M, Chemla D, Benmalek A, Lacroix C, Castaing D, Cauquil C, Dinanian S, Eliahou L, Samuel D, Adams D, Le Guludec D, Slama MS, Rouzet F (2016) Cardiac dysautonomia predicts long-term survival in hereditary transthyretin amyloidosis after liver transplantation. JACC Cardiovasc Imaging 9:1432–1441

    Article  PubMed  Google Scholar 

  8. Amino T, Orimo S, Takahashi A, Uchihara T, Mizusawa H (2005) Profound cardiac sympathetic denervation occurs in Parkinson disease. Brain Pathol 15:29–34

    Article  PubMed  Google Scholar 

  9. Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR, Bonifati V, Brooks D, Burn DJ, Colosimo C, Fanciulli A, Ferreira J, Gasser T, Grandas F, Kanovsky P, Kostic V, Kulisevsky J, Oertel W, Poewe W, Reese JP, Relja M, Ruzicka E, Schrag A, Seppi K, Taba P, Vidailhet M (2013) EFNS/MDS-ES/ENS recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 20:16–34

    Article  PubMed  CAS  Google Scholar 

  10. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Schalij MJ, Bax JJ (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55:2769–2777

    Article  PubMed  Google Scholar 

  11. Borghammer P, Knudsen K, Fedorova TD, Brooks DJ (2017) Imaging Parkinson’s disease below the neck. NPJ Parkinsons Dis 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  12. Braune S (2001) The role of cardiac metaiodobenzylguanidine uptake in the differential diagnosis of parkinsonian syndromes. Clin Auton Res 11:351–355

    Article  PubMed  CAS  Google Scholar 

  13. Braune S, Reinhardt M, Schnitzer R, Riedel A, Lucking CH (1999) Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 53:1020–1025

    Article  PubMed  CAS  Google Scholar 

  14. Burgdorf C, Kurowski V, Bonnemeier H, Schunkert H, Radke PW (2008) Long-term prognosis of the transient left ventricular dysfunction syndrome (Tako-Tsubo cardiomyopathy): focus on malignancies. Eur J Heart Fail 10:1015–1019

    Article  PubMed  Google Scholar 

  15. Chizzola PR, Goncalves de Freitas HF, Marinho NV, Mansur JA, Meneghetti JC, Bocchi EA (2006) The effect of beta-adrenergic receptor antagonism in cardiac sympathetic neuronal remodeling in patients with heart failure. Int J Cardiol 106:29–34

    Article  PubMed  Google Scholar 

  16. Christensen TE, Bang LE, Holmvang L, Skovgaard DC, Oturai DB, Soholm H, Thomsen JH, Andersson HB, Ghotbi AA, Ihlemann N, Kjaer A, Hasbak P (2016) (123)I-MIBG scintigraphy in the subacute state of takotsubo cardiomyopathy. JACC Cardiovasc Imaging 9:982–990

    Article  PubMed  Google Scholar 

  17. Coates G, Chirakal R, Fallen EL, Firnau G, Garnett ES, Kamath MV, Scheffel A, Nahmias C (1996) Regional distribution and kinetics of [18F]6-flurodopamine as a measure of cardiac sympathetic activity in humans. Heart 75:29–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cook GA, Sullivan P, Holmes C, Goldstein DS (2014) Cardiac sympathetic denervation without Lewy bodies in a case of multiple system atrophy. Parkinsonism Relat Disord 20:926–928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL, Rascol O, Senard JM (2003) Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov Disord 18:890–897

    Article  PubMed  Google Scholar 

  20. de Milliano PA, de Groot AC, Tijssen JG, van Eck-Smit BL, Van Zwieten PA, Lie KI (2002) Beneficial effects of metoprolol on myocardial sympathetic function: evidence from a randomized, placebo-controlled study in patients with congestive heart failure. Am Heart J 144:E3

    Article  PubMed  Google Scholar 

  21. Didangelos T, Moralidis E, Karlafti E, Tziomalos K, Margaritidis C, Kontoninas Z, Stergiou I, Boulbou M, Papagianni M, Papanastasiou E, Hatzitolios AI (2018) A comparative assessment of cardiovascular autonomic reflex testing and cardiac (123)I-metaiodobenzylguanidine imaging in patients with type 1 diabetes mellitus without complications or cardiovascular risk factors. Int J Endocrinol 2018:5607208

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ding YS, Fowler JS, Dewey SL, Logan J, Schlyer DJ, Gatley SJ, Volkow ND, King PT, Wolf AP (1993) Comparison of high specific activity (-) and (+)-6-[18F]fluoronorepinephrine and 6-[18F]fluorodopamine in baboons: heart uptake, metabolism and the effect of desipramine. J Nucl Med 34:619–629

    PubMed  CAS  Google Scholar 

  23. Ding YS, Fowler JS, Gatley SJ, Dewey SL, Wolf AP, Schlyer DJ (1991) Synthesis of high specific activity 6-[18F]fluorodopamine for positron emission tomography studies of sympathetic nervous tissue. J Med Chem 34:861–863

    Article  PubMed  CAS  Google Scholar 

  24. Ding YS, Fowler JS, Gatley SJ, Logan J, Volkow ND, Shea C (1995) Mechanistic positron emission tomography studies of 6-[18F]fluorodopamine in living baboon heart: selective imaging and control of radiotracer metabolism using the deuterium isotope effect. J Neurochem 65:682–690

    Article  PubMed  CAS  Google Scholar 

  25. Donadio V, Cortelli P, Elam M, Di Stasi V, Montagna P, Holmberg B, Giannoccaro MP, Bugiardini E, Avoni P, Baruzzi A, Liguori R (2010) Autonomic innervation in multiple system atrophy and pure autonomic failure. J Neurol Neurosurg Psychiatry 81:1327–1335

    Article  PubMed  CAS  Google Scholar 

  26. Donadio V, Incensi A, Piccinini C, Cortelli P, Giannoccaro MP, Baruzzi A, Liguori R (2016) Skin nerve misfolded alpha-synuclein in pure autonomic failure and Parkinson disease. Ann Neurol 79:306–316

    Article  PubMed  CAS  Google Scholar 

  27. Druschky A, Hilz MJ, Platsch G, Radespiel-Troger M, Druschky K, Kuwert T, Neundorfer B (2000) Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci 175:3–12

    Article  PubMed  CAS  Google Scholar 

  28. Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667–1676

    Article  PubMed  CAS  Google Scholar 

  29. Eldadah BA, Pacak K, Eisenhofer G, Holmes C, Kopin IJ, Goldstein DS (2004) Cardiac uptake-1 inhibition by high circulating norepinephrine levels in patients with pheochromocytoma. Hypertension 43:1227–1232

    Article  PubMed  CAS  Google Scholar 

  30. Fujishiro H, Nakamura S, Kitazawa M, Sato K, Iseki E (2012) Early detection of dementia with Lewy bodies in patients with amnestic mild cognitive impairment using 123I-MIBG cardiac scintigraphy. J Neurol Sci 315:115–119

    Article  PubMed  Google Scholar 

  31. Gagnon N, Mansour S, Bitton Y, Bourdeau I (2017) Takotsubo-like cardiomyopathy in a large cohort of patients with pheochromocytoma and paraganglioma. Endocr Pract 23:1178–1192

    Article  PubMed  Google Scholar 

  32. Gerson MC, McGuire N, Wagoner LE (2003) Sympathetic nervous system function as measured by I-123 metaiodobenzylguanidine predicts transplant-free survival in heart failure patients with idiopathic dilated cardiomyopathy. J Card Fail 9:384–391

    Article  PubMed  Google Scholar 

  33. Giannoccaro MP, Donadio V, Incensi A, Pizza F, Cason E, Di Stasi V, Martinelli P, Scaglione C, Capellari S, Treglia G, Liguori R (2015) Skin biopsy and I-123 MIBG scintigraphy findings in idiopathic Parkinson’s disease and parkinsonism: a comparative study. Mov Disord 30:986–989

    Article  PubMed  Google Scholar 

  34. Giordano A, Calcagni ML, Verrillo A, Pellegrinotti M, Frontoni S, Spallone V, Gambardella S (2000) Assessment of sympathetic innervation of the heart in diabetes mellitus using 123I-MIBG. Diabetes Nutr Metab 13:350–355

    PubMed  CAS  Google Scholar 

  35. Goldstein DS (2016) Cardiac dysautonomia and survival in hereditary transthyretin amyloidosis. JACC Cardiovasc Imaging 9:1442–1445

    Article  PubMed  Google Scholar 

  36. Goldstein DS, Chang PC, Eisenhofer G, Miletich R, Finn R, Bacher J, Kirk KL, Bacharach S, Kopin IJ (1990) Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation 81:1606–1621

    Article  PubMed  CAS  Google Scholar 

  37. Goldstein DS, Cheshire WP (2018) Roles of catechol neurochemistry in autonomic function testing. Clin Auton Res 28(3):273–288

  38. Goldstein DS, Eisenhofer G, Dunn BB, Armando I, Lenders J, Grossman E, Holmes C, Kirk KL, Bacharach S, Adams R et al (1993) Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22:1961–1971

    Article  PubMed  CAS  Google Scholar 

  39. Goldstein DS, Grossman E, Tamrat M, Chang PC, Eisenhofer G, Bacher J, Kirk KL, Bacharach S, Kopin IJ (1991) Positron emission imaging of cardiac sympathetic innervation and function using 18F-6-fluorodopamine: effects of chemical sympathectomy by 6-hydroxydopamine. J Hypertens 9:417–423

    Article  PubMed  CAS  Google Scholar 

  40. Goldstein DS, Holmes C, Bentho O, Sato T, Moak J, Sharabi Y, Imrich R, Conant S, Eldadah BA (2008) Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple system atrophy. Parkinsonism Relat Disord 14:600–607

    Article  PubMed  PubMed Central  Google Scholar 

  41. Goldstein DS, Holmes C, Kopin IJ, Sharabi Y (2011) Intra-neuronal vesicular uptake of catecholamines is decreased in patients with Lewy body diseases. J Clin Investig 121:3320–3330

    Article  PubMed  CAS  Google Scholar 

  42. Goldstein DS, Holmes C, Li ST, Bruce S, Metman LV, Cannon RO 3rd (2000) Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 133:338–347

    Article  PubMed  CAS  Google Scholar 

  43. Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y (2018) Cardiac sympathetic denervation predicts PD in at-risk individuals. Parkinsonism Relat Disord 52:90–93

  44. Goldstein DS, Holmes C, Sharabi Y, Brentzel S, Eisenhofer G (2003) Plasma levels of catechols and metanephrines in neurogenic orthostatic hypotension. Neurology 60:1327–1332

    Article  PubMed  CAS  Google Scholar 

  45. Goldstein DS, Orimo S (2009) Cardiac sympathetic neuroimaging: summary of the first international symposium. Clin Auton Res 19:133–136

    Article  Google Scholar 

  46. Goldstein DS, Sharabi Y (2009) Neurogenic orthostatic hypotension: a pathophysiological approach. Circulation 119:139–146

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goldstein DS, Sharabi Y (2017) The heart of PD: Lewy body diseases as neurocardiologic disorders. Brain Res. doi: https://doi.org/10.1016/j.brainres.2017.09.033

  48. Haensch CA, Lerch H, Jorg J, Isenmann S (2009) Cardiac denervation occurs independent of orthostatic hypotension and impaired heart rate variability in Parkinson’s disease. Parkinsonism Relat Disord 15:134–137

    Article  PubMed  Google Scholar 

  49. Hakusui S, Yasuda T, Yanagi T, Tohyama J, Hasegawa Y, Koike Y, Hirayama M, Takahashi A (1994) A radiological analysis of heart sympathetic functions with meta-[123I]iodobenzylguanidine in neurological patients with autonomic failure. J Auton Nerv Syst 49:81–84

    Article  PubMed  CAS  Google Scholar 

  50. Hanyu H, Shimizu S, Hirao K, Sakurai H, Iwamoto T, Chikamori T, Hida S, Yamashina A, Koizumi K, Abe K (2006) The role of 123I-metaiodobenzylguanidine myocardial scintigraphy in the diagnosis of Lewy body disease in patients with dementia in a memory clinic. Dement Geriatr Cogn Disord 22:379–384

    Article  PubMed  Google Scholar 

  51. Imamura Y, Ando H, Mitsuoka W, Egashira S, Masaki H, Ashihara T, Fukuyama T (1995) Iodine-123 metaiodobenzylguanidine images reflect intense myocardial adrenergic nervous activity in congestive heart failure independent of underlying cause. J Am Coll Cardiol 26:1594–1599

    Article  PubMed  CAS  Google Scholar 

  52. Imperato-McGinley J, Gautier T, Ehlers K, Zullo MA, Goldstein DS, Vaughan ED Jr (1987) Reversibility of catecholamine-induced dilated cardiomyopathy in a child with a pheochromocytoma. N Engl J Med 316:793–797

    Article  PubMed  CAS  Google Scholar 

  53. Imrich R, Eldadah BA, Bentho O, Pechnik S, Sharabi Y, Holmes C, Grossman E, Goldstein DS (2009) Functional effects of cardiac sympathetic denervation in neurogenic orthostatic hypotension. Parkinsonism Relat Disord 15:122–127

    Article  PubMed  Google Scholar 

  54. Ito K, Sugihara H, Kinoshita N, Azuma A, Matsubara H (2005) Assessment of Takotsubo cardiomyopathy (transient left ventricular apical ballooning) using 99mTc-tetrofosmin, 123I-BMIPP, 123I-MIBG and 99mTc-PYP myocardial SPECT. Ann Nucl Med 19:435–445

    Article  PubMed  Google Scholar 

  55. Iversen LL (1963) The uptake of noradrenaline by the isolated perfused rat heart. Br J Pharmacol 21:523–537

    CAS  Google Scholar 

  56. Izumi C, Himura Y, Konishi T (1995) Abnormal cardiac sympathetic nerve function in a patient with pheochromocytoma. An analysis using 123I metaiodobenzylguanidine scintigraphy. Int J Cardiol 50:189–192

    Article  PubMed  CAS  Google Scholar 

  57. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55:2212–2221

    Article  PubMed  Google Scholar 

  58. Kakuchi H, Sasaki T, Ishida Y, Komamura K, Miyatake K (1999) Clinical usefulness of 123I meta-iodobenzylguanidine imaging in predicting the effectiveness of beta blockers for patients with idiopathic dilated cardiomyopathy before and soon after treatment. Heart 81:148–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M (2005) Effects of candesartan on cardiac sympathetic nerve activity in patients with congestive heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol 45:661–667

    Article  PubMed  CAS  Google Scholar 

  60. Kasama S, Toyama T, Sumino H, Nakazawa M, Matsumoto N, Sato Y, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M (2008) Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med 49:907–914

    Article  PubMed  Google Scholar 

  61. Kashihara K, Ohno M, Kawada S, Okumura Y (2006) Reduced cardiac uptake and enhanced washout of 123I-MIBG in pure autonomic failure occurs conjointly with Parkinson’s disease and dementia with Lewy bodies. J Nucl Med 47:1099–1101

    PubMed  CAS  Google Scholar 

  62. Kim JS, Park HE, Oh YS, Lee SH, Park JW, Son BC, Lee KS (2016) Orthostatic hypotension and cardiac sympathetic denervation in Parkinson disease patients with REM sleep behavioral disorder. J Neurol Sci 362:59–63

    Article  PubMed  Google Scholar 

  63. Kim JS, Park HE, Oh YS, Song IU, Yang DW, Park JW, Lee KS (2015) (123)I-MIBG myocardial scintigraphy and neurocirculatory abnormalities in patients with dementia with Lewy bodies and Alzheimer’s disease. J Neurol Sci 357:173–177

    Article  PubMed  Google Scholar 

  64. Kim JS, Park HE, Park IS, Oh YS, Ryu DW, Song IU, Jung YA, Yoo IR, Choi HS, Lee PH, Lee KS (2017) Normal ‘heart’ in Parkinson’s disease: is this a distinct clinical phenotype? Eur J Neurol 24:349–356

    Article  PubMed  Google Scholar 

  65. Kioka H, Yamada T, Mine T, Morita T, Tsukamoto Y, Tamaki S, Masuda M, Okuda K, Hori M, Fukunami M (2007) Prediction of sudden death in patients with mild-to-moderate chronic heart failure by using cardiac iodine-123 metaiodobenzylguanidine imaging. Heart 93:1213–1218

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kobayashi S, Tateno M, Morii H, Utsumi K, Saito T (2009) Decreased cardiac MIBG uptake, its correlation with clinical symptoms in dementia with Lewy bodies. Psychiatry Res 174:76–80

    Article  PubMed  Google Scholar 

  67. Kobayashi Y, Kobayashi Y, Hirohata A (2014) Pheochromocytoma found in Takotsubo cardiomyopathy patients. J. Invasive Cardiol 26:E76–E77

    PubMed  Google Scholar 

  68. Koutelou M, Katsikis A, Flevari P, Theodorakis G, Livanis E, Georgiadis M, Voudris V, Kremastinos D (2009) Predictive value of cardiac autonomic indexes and MIBG washout in ICD recipients with mild to moderate heart failure. Ann Nucl Med 23:677–684

    Article  PubMed  Google Scholar 

  69. Kurata C, Shouda S, Mikami T, Uehara A, Ishikawa K, Tawarahara K, Nakano T, Matoh F, Takeuchi K (1998) Metaiodobenzylguanidine and heart rate variability in heart failure. Jpn Circ J 62:770–772

    Article  PubMed  CAS  Google Scholar 

  70. Li ST, Dendi R, Holmes C, Goldstein DS (2002) Progressive loss of cardiac sympathetic innervation in Parkinson’s disease. Ann Neurol 52:220–223

    Article  PubMed  Google Scholar 

  71. Lynn MD, Shapiro B, Sisson JC, Beierwaltes WH, Meyers LJ, Ackerman R, Mangner TJ (1985) Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology 155:789–792

    Article  PubMed  CAS  Google Scholar 

  72. Manabe Y, Inui Y, Toyama H, Kosaka K (2017) 123I-metaiodobenzylguanidine myocardial scintigraphy with early images alone is useful for the differential diagnosis of dementia with Lewy bodies. Psychiatry Res 261:75–79

    Article  Google Scholar 

  73. Mantysaari M, Kuikka J, Mustonen J, Tahvanainen K, Vanninen E, Lansimies E, Uusitupa M (1996) Measurement of myocardial accumulation of 123I-metaiodobenzylguanidine for studying cardiac autonomic neuropathy in diabetes mellitus. Clin Auton Res 6:163–169

    Article  PubMed  CAS  Google Scholar 

  74. Maser RE, Mitchell BD, Vinik AI, Freeman R (2003) The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 26:1895–1901

    Article  PubMed  Google Scholar 

  75. Matsui H, Nishinaka K, Oda M, Komatsu K, Kubori T, Udaka F (2006) Does cardiac metaiodobenzylguanidine (MIBG) uptake in Parkinson’s disease correlate with major autonomic symptoms? Parkinsonism Relat Disord 12:284–288

    Article  PubMed  Google Scholar 

  76. Matsui H, Udaka F, Oda M, Kubori T, Nishinaka K, Kameyama M (2005) Metaiodobenzylguanidine (MIBG) scintigraphy at various parts of the body in Parkinson’s disease and multiple system atrophy. Auton Neurosci 119:56–60

    Article  PubMed  Google Scholar 

  77. Matsui T, Tsutamoto T, Maeda K, Kusukawa J, Kinoshita M (2002) Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments—comparison with neurohumoral factors. Circ J 66:537–543

    Article  PubMed  Google Scholar 

  78. Maunoury C, Agostini D, Acar P, Antonietti T, Sidi D, Bouvard G, Kachaner J, Barritault L (2000) Impairment of cardiac neuronal function in childhood dilated cardiomyopathy: an 123I-MIBG scintigraphic study. J Nucl Med 41:400–404

    PubMed  CAS  Google Scholar 

  79. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attems J, Ballard CG, Bayston A, Beach TG, Blanc F, Bohnen N, Bonanni L, Bras J, Brundin P, Burn D, Chen-Plotkin A, Duda JE, El-Agnaf O, Feldman H, Ferman TJ, Ffytche D, Fujishiro H, Galasko D, Goldman JG, Gomperts SN, Graff-Radford NR, Honig LS, Iranzo A, Kantarci K, Kaufer D, Kukull W, Lee VMY, Leverenz JB, Lewis S, Lippa C, Lunde A, Masellis M, Masliah E, McLean P, Mollenhauer B, Montine TJ, Moreno E, Mori E, Murray M, O’Brien JT, Orimo S, Postuma RB, Ramaswamy S, Ross OA, Salmon DP, Singleton A, Taylor A, Thomas A, Tiraboschi P, Toledo JB, Trojanowski JQ, Tsuang D, Walker Z, Yamada M, Kosaka K (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meredith IT, Eisenhofer G, Lambert GW, Dewar EM, Jennings GL, Esler MD (1993) Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation 88:136–145

    Article  PubMed  CAS  Google Scholar 

  81. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL, Duval AM, Loisance D, Castaigne A, Syrota A (1999) Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 40:917–923

    PubMed  CAS  Google Scholar 

  82. Nakajima K, Okuda K, Yoshimura M, Matsuo S, Wakabayashi H, Imanishi Y, Kinuya S (2014) Multicenter cross-calibration of I-123 metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimator variations. J Nucl Cardiol 21:970–978

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nakajima K, Yoshita M, Matsuo S, Taki J, Kinuya S (2008) Iodine-123-MIBG sympathetic imaging in Lewy-body diseases and related movement disorders. Q J Nucl Med Mol Imaging 52:378–387

    PubMed  CAS  Google Scholar 

  84. Nakamura T, Hirayama M, Hara T, Mizutani Y, Suzuki J, Watanabe H, Sobue G (2014) Role of cardiac sympathetic nerves in preventing orthostatic hypotension in Parkinson’s disease. Parkinsonism Relat Disord 20:409–414

    Article  PubMed  Google Scholar 

  85. Niimi Y, Ito S, Murate K, Hirota S, Hikichi C, Ishikawa T, Maeda T, Nagao R, Shima S, Mizutani Y, Ueda A, Mutoh T (2017) Usefulness of combining (123)I-FP-CIT-SPECT striatal asymmetry index and cardiac (123)I-metaiodobenzylguanidine scintigraphy examinations for diagnosis of parkinsonisms. J Neurol Sci 377:174–178

    Article  PubMed  Google Scholar 

  86. Nuvoli S, Palumbo B, Malaspina S, Madeddu G, Spanu A (2018) (123)I-ioflupane SPET and (123)I-MIBG in the diagnosis of Parkinson’s disease and parkinsonian disorders and in the differential diagnosis between Alzheimer’s and Lewy’s bodies dementias. Hell J Nucl Med 21:60–68

    PubMed  Google Scholar 

  87. Nuvoli S, Spanu A, Piras MR, Nieddu A, Mulas A, Rocchitta G, Galleri G, Serra PA, Madeddu G (2017) 123I-ioflupane brain SPECT and 123I-MIBG cardiac planar scintigraphy combined use in uncertain parkinsonian disorders. Medicine (Baltimore) 96:e6967

    Article  CAS  Google Scholar 

  88. Odagiri H, Baba T, Nishio Y, Iizuka O, Matsuda M, Inoue K, Kikuchi A, Hasegawa T, Aoki M, Takeda A, Taki Y, Mori E (2016) On the utility of MIBG SPECT/CT in evaluating cardiac sympathetic dysfunction in Lewy body diseases. PLoS One 11:e0152746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Oka H, Mochio S, Yoshioka M, Morita M, Onouchi K, Inoue K (2006) Cardiovascular dysautonomia in Parkinson’s disease and multiple system atrophy. Acta Neurol Scand 113:221–227

    Article  PubMed  CAS  Google Scholar 

  90. Okishige K, Sasano T, Yano K, Azegami K, Suzuki K, Itoh K (2001) Serious arrhythmias in patients with apical hypertrophic cardiomyopathy. Intern Med 40:396–402

    Article  PubMed  CAS  Google Scholar 

  91. Orimo S, Amino T, Itoh Y, Takahashi A, Kojo T, Uchihara T, Tsuchiya K, Mori F, Wakabayashi K, Takahashi H (2005) Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol 109:583–588

    Article  PubMed  Google Scholar 

  92. Orimo S, Kanazawa T, Nakamura A, Uchihara T, Mori F, Kakita A, Wakabayashi K, Takahashi H (2007) Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol 113:81–86

    Article  PubMed  Google Scholar 

  93. Orimo S, Oka T, Miura H, Tsuchiya K, Mori F, Wakabayashi K, Nagao T, Yokochi M (2002) Sympathetic cardiac denervation in Parkinson’s disease and pure autonomic failure but not in multiple system atrophy. J Neurol Neurosurg Psychiatry 73:776–777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Orimo S, Suzuki M, Inaba A, Mizusawa H (2012) 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord 18:494–500

    Article  PubMed  Google Scholar 

  95. Pandit-Taskar N, Zanzonico P, Staton KD, Carrasquillo JA, Reidy-Lagunes D, Lyashchenko S, Burnazi E, Zhang H, Lewis JS, Blasberg R, Larson SM, Weber WA, Modak S (2018) Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 59:147–153

    Article  PubMed  PubMed Central  Google Scholar 

  96. Raffel DM, Koeppe RA, Little R, Wang CN, Liu S, Junck L, Heumann M, Gilman S (2006) PET measurement of cardiac and nigrostriatal denervation in parkinsonian syndromes. J Nucl Med 47:1769–1777

    PubMed  CAS  Google Scholar 

  97. Rascol O, Schelosky L (2009) 123I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov Disord 24[Suppl 2]:S732–S741

    Article  PubMed  Google Scholar 

  98. Reinhardt MJ, Jungling FD, Krause TM, Braune S (2000) Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake. Eur J Nucl Med 27:595–600

    Article  PubMed  CAS  Google Scholar 

  99. Rundqvist B, Bergmann-Sverrisdottir Y, Andersson B, Elam M, Eisenhofer G, Waagstein F, Friberg P (2001) Metoprolol reduces sympathetic nerve hyperactivity in patients with heart failure. J Heart Lung Transplant 20:251–252

    Article  PubMed  CAS  Google Scholar 

  100. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P (1997) Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 95:169–175

    Article  PubMed  CAS  Google Scholar 

  101. Saiki S, Hirose G, Sakai K, Kataoka S, Hori A, Saiki M, Kaito M, Higashi K, Taki S, Kakeshita K, Fujino S, Miaki M (2004) Cardiac 123I-MIBG scintigraphy can assess the disease severity and phenotype of PD. J Neurol Sci 220:105–111

    Article  PubMed  Google Scholar 

  102. Sestini S, Pestelli F, Leoncini M, Bellandi F, Mazzeo C, Mansi L, Carrio I, Castagnoli A (2017) The natural history of takotsubo syndrome: a 2-year follow-up study with myocardial sympathetic and perfusion G-SPECT imaging. Eur J Nucl Med Mol Imaging 44:267–283

    Article  PubMed  CAS  Google Scholar 

  103. Sharabi Y, Eldadah B, Li ST, Dendi R, Pechnik S, Holmes C, Goldstein DS (2006) Neuropharmacologic distinction of neurogenic orthostatic hypotension syndromes. Clin Neuropharmacol 29:97–105

    Article  PubMed  Google Scholar 

  104. Shinohara H, Fukuda N, Soeki T, Sakabe K, Onose Y, Tamura Y (2002) Effects of angiotensin II receptor antagonists on [(123)I]metaiodobenzylguanidine myocardial imaging findings and neurohumoral factors in chronic heart failure. Heart Vessels 17:47–52

    Article  PubMed  Google Scholar 

  105. Shulkin BL, Shapiro B, Tobes MC, Shen SW, Wieland DM, Meyers LJ, Lee HT, Petry NA, Sisson JC, Beierwaltes WH (1986) Iodine-123-4-amino-3-iodobenzylguanidine, a new sympathoadrenal imaging agent: comparison with iodine-123 metaiodobenzylguanidine. J Nucl Med 27:1138–1142

    PubMed  CAS  Google Scholar 

  106. Sisson JC, Frager MS, Valk TW, Gross MD, Swanson DP, Wieland DM, Tobes MC, Beierwaltes WH, Thompson NW (1981) Scintigraphic localization of pheochromocytoma. N Engl J Med 305:12–17

    Article  PubMed  CAS  Google Scholar 

  107. Sisson JC, Shapiro B, Meyers L, Mallette S, Mangner TJ, Wieland DM, Glowniak JV, Sherman P, Beierwaltes WH (1987) Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med 28:1625–1636

    PubMed  CAS  Google Scholar 

  108. Slart R, Glaudemans A, Hazenberg BPC, Noordzij W (2017) Imaging cardiac innervation in amyloidosis. J Nucl Cardiol. doi: https://doi.org/10.1007/s12350-017-1059-9.

  109. Soeki T, Tamura Y, Bandou K, Tanaka H, Takeichi N, Shinohara H, Yui Y, Fukuda N, Sui O (1998) Long-term effects of the angiotensin-converting enzyme inhibitor enalapril on chronic heart failure. Examination by 123I-MIBG imaging. Jpn Heart J 39:743–751

    Article  PubMed  CAS  Google Scholar 

  110. Somsen GA, van Vlies B, de Milliano PA, Borm JJ, van Royen EA, Endert E, Lie KI (1996) Increased myocardial [123I]-metaiodobenzylguanidine uptake after enalapril treatment in patients with chronic heart failure. Heart 76:218–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sonni I, Ratib O, Boccardi M, Picco A, Herholz K, Nobili F, Varrone A, Force Geneva Task, for the Roadmap of Alzheimer’s B (2017) Clinical validity of presynaptic dopaminergic imaging with (123)I-ioflupane and noradrenergic imaging with (123)I-MIBG in the differential diagnosis between Alzheimer’s disease and dementia with Lewy bodies in the context of a structured 5-phase development framework. Neurobiol Aging 52:228–242

    Article  PubMed  CAS  Google Scholar 

  112. Stevens MJ, Dayanikli F, Raffel DM, Allman KC, Sandford T, Feldman EL, Wieland DM, Corbett J, Schwaiger M (1998) Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 31:1575–1584

    Article  PubMed  CAS  Google Scholar 

  113. Suzuki M, Kurita A, Hashimoto M, Fukumitsu N, Abo M, Ito Y, Urashima M, Inoue K (2006) Impaired myocardial 123I-metaiodobenzylguanidine uptake in Lewy body disease: comparison between dementia with Lewy bodies and Parkinson’s disease. J Neurol Sci 240:15–19

    Article  PubMed  CAS  Google Scholar 

  114. Takahashi M, Ikemura M, Oka T, Uchihara T, Wakabayashi K, Kakita A, Takahashi H, Yoshida M, Toru S, Kobayashi T, Orimo S (2015) Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease. J Neurol Neurosurg Psychiatry 86:939–944

    Article  PubMed  Google Scholar 

  115. Taki J, Yoshita M, Yamada M, Tonami N (2004) Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: it can be a specific marker for Lewy body disease. Ann Nucl Med 18:453–461

    Article  PubMed  Google Scholar 

  116. Tipre DN, Goldstein DS (2005) Cardiac and extra-cardiac sympathetic denervation in Parkinson disease with orthostatic hypotension and in pure autonomic failure. J Nucl Med 46:1775–1781

    PubMed  CAS  Google Scholar 

  117. Toru S, Kanouchi T, Yokota T, Yagi Y, Machida A, Kobayashi T (2018) Utility of autonomic function tests to differentiate dementia with Lewy bodies and Parkinson disease with dementia from Alzheimer disease. Eur Neurol 79:27–32

    Article  PubMed  Google Scholar 

  118. Toyama T, Hoshizaki H, Seki R, Isobe N, Adachi H, Naito S, Oshima S, Taniguchi K (2003) Efficacy of carvedilol treatment on cardiac function and cardiac sympathetic nerve activity in patients with dilated cardiomyopathy: comparison with metoprolol therapy. J Nucl Med 44:1604–1611

    PubMed  CAS  Google Scholar 

  119. Treglia G, Cason E, Gabellini A, Giordano A, Fagioli G (2010) Recent developments in innervation imaging using iodine-123-metaiodobenzylguanidine scintigraphy in Lewy body diseases. Neurol Sci 31:417–422

    Article  PubMed  Google Scholar 

  120. Treglia G, Cason E, Giordano A, Fagioli G (2012) Abnormal striatal dopaminergic and cardiac sympathetic imaging in dementia with Lewy bodies: two sides of the same coin. Parkinsonism Relat Disord 18:707–708 (author reply 709)

    Article  PubMed  Google Scholar 

  121. Treglia G, Stefanelli A, Cason E, Cocciolillo F, Di Giuda D, Giordano A (2011) Diagnostic performance of iodine-123-metaiodobenzylguanidine scintigraphy in differential diagnosis between Parkinson’s disease and multiple-system atrophy: a systematic review and a meta-analysis. Clin Neurol Neurosurg 113:823–829

    Article  PubMed  Google Scholar 

  122. Umemura A, Oeda T, Hayashi R, Tomita S, Kohsaka M, Yamamoto K, Sawada H (2013) Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation of multiple system atrophy and Parkinson’s disease. PLoS One 8:e61066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Uyama N, Otsuka H, Shinya T, Otomi Y, Harada M, Sako W, Izumi Y, Kaji R, Watanabe Y, Takashi S, Kunikane Y (2017) The utility of the combination of a SPECT study with [123I]-FP-CIT of dopamine transporters and [123I]-MIBG myocardial scintigraphy in differentiating Parkinson disease from other degenerative parkinsonian syndromes. Nucl Med Commun 38:487–492

    Article  PubMed  PubMed Central  Google Scholar 

  124. Valli N, Labrousse L, Reant P, Dos-Santos P (2007) Significant improvement of cardiac sympathetic function following cardiac support device implantation: illustration by 123I-MIBG scintigraphy. Eur J Cardiothorac Surg 32:943–944

    Article  PubMed  Google Scholar 

  125. Verschure DO, Poel E, Nakajima K, Okuda K, van Eck-Smit BLF, Somsen GA, Verberne HJ (2017) A European myocardial (123)I-mIBG cross-calibration phantom study. J Nucl Cardiol. doi: https://doi.org/10.1007/s12350-017-0782-6

  126. Villarroel AH, Vitola JV, Stier AL Jr, Dippe T Jr, Cunha C (2009) Takotsubo or stress cardiomyopathy: role of nuclear cardiology using (123)I-MIBG. Expert Rev Cardiovasc Ther 7:847–852

    Article  PubMed  CAS  Google Scholar 

  127. Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579

    Article  PubMed  Google Scholar 

  128. Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, Shimamoto K (2001) Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med 42:1757–1767

    PubMed  CAS  Google Scholar 

  129. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu JL, Clinthorne NH, Otto CA, Swanson DP, Beierwaltes WH (1981) Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 22:22–31

    PubMed  CAS  Google Scholar 

  130. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548

    Article  PubMed  CAS  Google Scholar 

  131. Wong KK, Raffel DM, Koeppe RA, Frey KA, Bohnen NI, Gilman S (2012) Pattern of cardiac sympathetic denervation in idiopathic Parkinson disease studied with 11C hydroxyephedrine PET. Radiology 265:240–247

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wu J, Gallezot JD, Lu Y, Ye Q, Liu H, Esserman DA, Kyriakides TC, Thorn S, Hashemi Zonouz T, Liu YH, Lampert R, Sinusas AJ, Carson RE, Liu C (2018) Simplified quantification and acquisition protocol of (123)I-mIBG dynamic SPECT. J Nucl Med. doi: https://doi.org/10.2967/jnumed.117.202143

  133. Shams Y-H, Tornvall P (2018) Epidemiology, pathogenesis, and management of takotsubo syndrome. Clin Auton Res 28:53–65

    Article  Google Scholar 

  134. Yang T, Wang L, Li Y, Cheng M, Jiao J, Wang Q, Guo H (2017) (131)I-MIBG myocardial scintigraphy for differentiation of Parkinson’s disease from multiple system atrophy or essential tremor in Chinese population. J Neurol Sci 373:48–51

    Article  PubMed  Google Scholar 

  135. Yoshita M, Arai H, Arai H, Arai T, Asada T, Fujishiro H, Hanyu H, Iizuka O, Iseki E, Kashihara K, Kosaka K, Maruno H, Mizukami K, Mizuno Y, Mori E, Nakajima K, Nakamura H, Nakano S, Nakashima K, Nishio Y, Orimo S, Samuraki M, Takahashi A, Taki J, Tokuda T, Urakami K, Utsumi K, Wada K, Washimi Y, Yamasaki J, Yamashina S, Yamada M (2015) Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS One 10:e0120540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Yoshita M, Taki J, Yamada M (2001) A clinical role for [(123)I]MIBG myocardial scintigraphy in the distinction between dementia of the Alzheimer’s-type and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 71:583–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Yoshita M, Taki J, Yokoyama K, Noguchi-Shinohara M, Matsumoto Y, Nakajima K, Yamada M (2006) Value of 123I-MIBG radioactivity in the differential diagnosis of DLB from AD. Neurology 66:1850–1854

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The research reported here was indeed supported by the Division of Intramural Research of the NINDS and the NIH. Since we’re intramural, there isn’t a grant number. There is a Project Number. Please refer to the Project Number.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, D.S., Cheshire, W.P. Roles of cardiac sympathetic neuroimaging in autonomic medicine. Clin Auton Res 28, 397–410 (2018). https://doi.org/10.1007/s10286-018-0547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-018-0547-6

Keywords

Navigation