Skip to main content

Advertisement

Log in

Recent advances in growth hormone signaling

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Growth hormone (GH) is a major regulatory factor for overall body growth as evidenced by the height extremes in people with abnormal circulating GH levels or GH receptor (GHR) disruptions. GH also affects metabolism, cardiac and immune function, mental agility and aging. Currently, GH is being used therapeutically for a variety of clinical conditions including promotion of growth in short statured children, treatment of adults with GH deficiency and HIV-associated wasting. To help reveal previous unrecognized functions of GH, better understand the known functions of GH, and avoid adverse consequences that are often associated with exogenous GH administration, careful delineation of the molecular mechanisms whereby GH induces its diverse effects is needed. GH is a peptide hormone that is secreted into the circulation by the anterior pituitary and acts upon various target tissues expressing GHR. GH binding of GHR activates the tyrosine kinase Janus kinase 2 (JAK2), thus initiating a multitude of signaling cascades that result in a variety of biological responses including cellular proliferation, differentiation and migration, prevention of apoptosis, cytoskeletal reorganization and regulation of metabolic pathways. A number of signaling proteins and pathways activated by GH have been identified, including JAKs, signal transducers and activators of transcription (Stats), the mitogen activated protein kinase (MAPK) pathway, and the phosphatidylinositol 3′-kinase (PI3K) pathway. Although these signal transduction pathways have been well characterized, the manner by which GH activates these pathways, the downstream signals induced by these pathways, and the cross-talk with other pathways are not completely understood. Recent findings have added vital information to our understanding of these downstream signals induced by GH and mechanisms that terminate GH signaling, and identified new GH signaling proteins and pathways. This review will highlight some of these findings, many of which are unexpected and some of which challenge previously held beliefs about the mechanisms of GH signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wells JA. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A 1996;93:1–6.

    Article  PubMed  CAS  Google Scholar 

  2. Rowlinson SW, Behncken SN, Rowland JE, Clarkson RW, Strasburger CJ, Wu Z, et al. Activation of chimeric and full-length growth hormone receptors by growth hormone receptor monoclonal antibodies. A specific conformational change may be required for full-length receptor signaling. J Biol Chem 1998; 273:5307–14.

    Article  PubMed  CAS  Google Scholar 

  3. Gent J, van Kerkhof P, Roza M, Bu G, Strous GJ. Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc Natl Acad Sci U.S.A. 2002;99:9858–63.

    Article  PubMed  CAS  Google Scholar 

  4. Brown RJ, Adams JJ, Pelekanos RA, Wan Y, McKinstry WJ, Palethorpe K, et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Natl Acad Sci U S A 2005;12:814–21.

    CAS  Google Scholar 

  5. Argetsinger LS, Campbell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 1993;74:237–44.

    Article  PubMed  CAS  Google Scholar 

  6. VanderKuur JA, Wang X, Zhang L, Campbell GS, Allevato G, Billestrup N, et al. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase. J Biol Chem 1994;269:21709–17.

    PubMed  CAS  Google Scholar 

  7. Frank SJ, Yi W, Zhao Y, Goldsmith JF, Gilliland G, Jiang J, et al. Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor. J Biol Chem 1995;270:14776–85.

    Article  PubMed  CAS  Google Scholar 

  8. Tanner JW, Chen W, Young RL, Longmore GD, Shaw AS. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol Chem 1995;270:6523–30.

    Article  PubMed  CAS  Google Scholar 

  9. Argetsinger LS, Kouadio J-L, Steen H, Stensballe A, Jensen ON, Carter-Su C. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol 2004;24:4955–67.

    Article  PubMed  CAS  Google Scholar 

  10. Kurzer JH, Argetsinger LS, Zhou Y-J, Kouadio J-L, O’Shea JJ, Carter-Su C. Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-Bb. Mol Cell Biol 2004;24:4557–70.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen LH, Wang X, Kopchick JJ, Bouchelouche P, Nielsen JH, Galsgaard ED, Billestrup N. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and Stat5 activation. J Biol Chem 1996;271:12669–73.

    Article  PubMed  CAS  Google Scholar 

  12. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 1997;17:2497–501.

    PubMed  CAS  Google Scholar 

  13. Feener EP, Rosario F, Dunn SL, Stancheva Z, Myers Jr. MG. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol 2004;24:4968–78.

    Article  PubMed  CAS  Google Scholar 

  14. Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. Embo J 2006;25:4763–72.

    Article  PubMed  CAS  Google Scholar 

  15. Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. Embo J 1999;18:1309–20.

    Article  PubMed  CAS  Google Scholar 

  16. Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, Kinjyo I, Sasaki M, Johnston JA, Yoshimura A. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 1999;4:339–51.

    Article  PubMed  CAS  Google Scholar 

  17. Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 2001;276:47771–4.

    Article  PubMed  CAS  Google Scholar 

  18. Kurzer JH, Saharinen P, Silvennoinen O, Carter-Su C. Binding of SH2-B family members within a potential negative regulatory region maintains JAK2 in an active state. Mol Cell Biol 2006;26:6381–94.

    Article  PubMed  CAS  Google Scholar 

  19. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L, Lee J, Shoelson SE. Kinase activation through dimerization by human SH2-B. Mol Cell Biol 2005;25:2607–21.

    Article  PubMed  CAS  Google Scholar 

  20. Carpino N, Kobayashi R, Zang H, Takahashi Y, Jou ST, Feng J, Nakajima H, Ihle JN. Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein. Mol Cell Biol 2002;22:7491–500.

    Article  PubMed  CAS  Google Scholar 

  21. Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter-Su C. Molecular events in growth hormone-receptor interaction and signaling. In: Kostyo JL, editor. Handbook of physiology. New York: Oxford University Press; 1999. p. 445–80.

    Google Scholar 

  22. Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter-Su C. The role of the growth hormone receptor and JAK1 and JAK2 kinases in the activation of Stats 1 and 3 by growth hormone. Mol Endocrinol 1995;10:519–33.

    Article  Google Scholar 

  23. Wang X, Darus CJ, Xu BC, Kopchick JJ. Identification of growth hormone receptor (GHR) tyrosine residues required for GHR phosphorylation and JAK2 and STAT5 activation. Mol Endocrinol 1996;10:1249–60.

    Article  PubMed  CAS  Google Scholar 

  24. Smit LS, VanderKuur JA, Stimage A, Han Y, Luo G, Yu-lee L, et al. Growth hormone-induced tyrosyl phosphorylation and DNA binding activity of Stat5A and Stat5B. Endocrinol 1997;138:3426–34.

    Article  CAS  Google Scholar 

  25. Zhu T, Goh EL, Graichen R, Ling L, Lobie PE. Signal transduction via the growth hormone receptor. Cell Signal 2001;13:599–616.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu T, Ling L, Lobie PE. Identification of a JAK2-independent pathway regulating growth hormone (GH)-stimulated p44/42 mitogen-activated protein kinase activity. GH activation of Ral and phospholipase D is Src-dependent. J Biol Chem 2002;277:45592–603.

    Article  PubMed  CAS  Google Scholar 

  27. Ling L, Zhu T, Lobie PE. Src-CrkII-C3G-dependent activation of Rap1 switches growth hormone-stimulated p44/42 MAP kinase and JNK/SAPK activities. J Biol Chem 2003;278:27301–11.

    Article  PubMed  CAS  Google Scholar 

  28. Manabe N, Kubota Y, Kitanaka A, Ohnishi H, Taminato T, Tanaka T. Src transduces signaling via growth hormone (GH)-activated GH receptor (GHR) tyrosine-phosphorylating GHR and STAT5 in human leukemia cells. Leuk Res 2006;30:1391–8.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang F, Zhang Q, Tengholm A, Sjoholm A. Involvement of JAK2 and Src kinase tyrosine phosphorylation in human growth hormone-stimulated increases in cytosolic free Ca2+ and insulin secretion. Am J Physiol Cell Physiol 2006;291:C466–75.

    Article  PubMed  CAS  Google Scholar 

  30. Herrington J, Smit LS, Schwartz J, Carter-Su C. The role of STAT proteins in growth hormone signaling. Oncogene Res 2000; 19:2585–97.

    Article  CAS  Google Scholar 

  31. Cesena TI, Cui TX, Piwien-Pilipuk G, Kaplani J, Calinescu AA, Huo JS, et al. Multiple mechanisms of growth hormone-regulated gene transcription. Mol Genet Metab 2006.

  32. Kurzer. Growth hormone induced activation and regulation of Jak2 and Stat proteins. In: Pravin B, Sehgal DEL, Toshio Hirano, editors. Signal Transducers and Activators of Transcription (STATs). Dordrecht, The Netherlands: Kluwer; 2003. p. 177–90.

    Google Scholar 

  33. Waxman DJ, O’Connor C. Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol 2006;20: 2613–29.

    Article  PubMed  CAS  Google Scholar 

  34. Woelfle J, Chia DJ, Rotwein P. Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem 2003;278:51261–6.

    Article  PubMed  CAS  Google Scholar 

  35. Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P. Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem 2006;281:3190–7.

    Article  PubMed  CAS  Google Scholar 

  36. Rosenfeld RG, Kofoed E, Buckway C, Little B, Woods KA, Tsubaki J, et al. dentification of the first patient with a confirmed mutation of the JAK-STAT system. Pediatr Nephrol 2005;20:303–5.

    Article  PubMed  Google Scholar 

  37. Adriani M, Garbi C, Amodio G, Russo I, Giovannini M, Amorosi S, et al. Functional interaction of common {gamma}-chain and growth hormone receptor signaling apparatus. J Immunol 2006;177:6889–95.

    PubMed  CAS  Google Scholar 

  38. Rojas-Gil AP, Ziros PG, Diaz L, Kletsas D, Basdra EK, Alexandrides TK, et al. Growth hormone/JAK-STAT axis signal-transduction defect. A novel treatable cause of growth failure. Febs J 2006;273:3454–66.

    Article  PubMed  CAS  Google Scholar 

  39. Winston LA, Bertics PJ. Growth hormone stimulates the tyrosyl phosphorylation of 42- and 45-kDa ERK-related proteins. J Biol Chem 1992;267:4747–51.

    PubMed  CAS  Google Scholar 

  40. VanderKuur J, Allevato G, Billestrup N, Norstedt G, Carter-Su C. Growth hormone-promoted tyrosyl phosphorylation of Shc proteins and Shc association with Grb2. J Biol Chem 1995;270:7587–93.

    Article  PubMed  CAS  Google Scholar 

  41. Winston LA, Hunter T. JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 1995;270: 30837–40.

    Article  PubMed  CAS  Google Scholar 

  42. VanderKuur JA, Butch ER, Waters SB, Pessin JE, Guan K-L, Carter-Su C. Signalling molecules involved in coupling growth hormone receptor to MAP kinase activation. Endocrinol 1997;138:4301–7.

    Article  CAS  Google Scholar 

  43. Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M, et al. Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 1997;390:91–6.

    Article  PubMed  CAS  Google Scholar 

  44. Piwien-Pilipuk G, MacDougald O, Schwartz J. Dual regulation of phosphorylation and dephosphorylation of C/EBPbeta modulate its transcriptional activation and DNA binding in response to growth hormone. J Biol Chem 2002;277:44557–65.

    Article  PubMed  CAS  Google Scholar 

  45. Piwien Pilipuk G, Galigniana MD, Schwartz J. Subnuclear localization of C/EBP beta is regulated by growth hormone and dependent on MAPK. J Biol Chem 2003;278:35668–77

    Article  PubMed  CAS  Google Scholar 

  46. Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 1998;273:30057–60.

    Article  PubMed  CAS  Google Scholar 

  47. Verma AS, Dhir RN, Shapiro BH. Inadequacy of the Janus kinase 2/signal transducer and activator of transcription signal transduction pathway to mediate episodic growth hormone-dependent regulation of hepatic CYP2C11. Mol Pharmacol 2005;67:891–901.

    Article  PubMed  CAS  Google Scholar 

  48. Yang N, Huang Y, Jiang J, Frank SJ. Caveolar and lipid raft localization of the growth hormone receptor and its signaling elements: impact on growth hormone signaling. J Biol Chem 2004;279:20898–905.

    Article  PubMed  CAS  Google Scholar 

  49. Goh EL, Zhu T, Yakar S, LeRoith D, Lobie PE. CrkII participation in the cellular effects of growth hormone and insulin-like growth factor-1. Phosphatidylinositol-3 kinase dependent and independent effects. J Biol Chem 2000;275:17683–92.

    Article  PubMed  CAS  Google Scholar 

  50. Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J. Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J Biol Chem 1998;273:15906–12.

    Article  PubMed  CAS  Google Scholar 

  51. Yokota I, Hayashi H, Matsuda J, Saijo T, Naito E, Ito M, et al. Effect of growth hormone on the translocation of GLUT4 and its relation to insulin-like and anti-insulin action. Biochim Biophys Acta 1998;1404:451–6.

    Article  PubMed  CAS  Google Scholar 

  52. Costoya JA, Finidori J, Moutoussamy S, Searis R, Devesa J, Arce VM. Activation of growth hormone receptor delivers an antiapoptotic signal: evidence for a role of Akt in this pathway. Endocrinol 1999;140:5937–43.

    Article  CAS  Google Scholar 

  53. Sanders EJ, Parker E, Harvey S. Retinal ganglion cell survival in development: mechanisms of retinal growth hormone action. Exp Eye Res 2006;83:1205–14.

    Article  PubMed  CAS  Google Scholar 

  54. Kilgour E, Gout I, Anderson NG. Requirement for phosphoinositide 3-OH kinase in growth hormone signalling to the mitogen-activated protein kinase and p70s6k pathways. Biochem J 1996;315:517–22.

    PubMed  CAS  Google Scholar 

  55. MacKenzie SJ, Yarwood SJ, Peden AH, Bolger GB, Vernon RG, Houslay MD. Stimulation of p70S6 kinase via a growth hormone-controlled phosphatidylinositol 3-kinase pathway leads to the activation of a PDE4A cyclic AMP-specific phosphodiesterase in 3T3-F442A preadipocytes. Proc Natl Acad Sci USA 1998;95:3549–54.

    Article  PubMed  CAS  Google Scholar 

  56. Anderson NG. Simultaneous activation of p90RSK and p70S6K S6 kinases by growth hormone in 3T3-F442A preadipocytes. Biochem Biophys Res Commun 1993;193:284–90.

    Article  PubMed  CAS  Google Scholar 

  57. Goh EL, Pircher TJ, Wood TJ, Norstedt G, Graichen R, Lobie PE. Growth hormone-induced reorganization of the actin cytoskeleton is not required for STAT5 (signal transducer and activator of transcription-5)-mediated transcription. Endocrinol 1997;138: 3207–15.

    Article  CAS  Google Scholar 

  58. Goh EL, Pircher TJ, Lobie PE. Growth hormone promotion of tubulin polymerization stabilizes the microtubule network and protects against colchicine-induced apoptosis. Endocrinol 1998;139:4364–72.

    Article  CAS  Google Scholar 

  59. Zhu T, Goh ELK, LeRoith D, Lobie PE. Growth hormone stimulates the formation of a multiprotein signaling complex involving p130Cas and CrkII. Resultant activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). J Biol Chem 1998;273:33864–75.

    Article  PubMed  CAS  Google Scholar 

  60. Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA. CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol 1998;140:961–72.

    Article  PubMed  CAS  Google Scholar 

  61. Zhu T, Goh EL, Lobie PE. Growth hormone stimulates the tyrosine phosphorylation and association of p125 focal adhesion kinase (FAK) with JAK2. Fak is not required for stat-mediated transcription. J Biol Chem 1998;273:10682–89.

    Article  PubMed  CAS  Google Scholar 

  62. Zhu T, Lobie PE. Janus kinase 2-dependent activation of p38 mitogen-activated protein kinase by growth hormone. Resultant transcriptional activation of ATF-2 and CHOP, cytoskeletal re-organization and mitogenesis. J Biol Chem 2000;275:2103–14.

    Article  PubMed  CAS  Google Scholar 

  63. Herrington J, Diakonova M, Rui L, Gunter DR, Carter-Su C. SH2-B is required for growth hormone-induced actin reorganization. J Biol Chem 2000;275:13126–33.

    Article  PubMed  CAS  Google Scholar 

  64. Diakonova M, Gunter DR, Herrington J, Carter-Su C. SH2-Bb is a Rac-binding protein that regulates cell motility. J Biol Chem 2002;277:10669–77.

    Article  PubMed  CAS  Google Scholar 

  65. Flores-Morales A, Greenhalgh CJ, Norstedt G, Rico-Bautista E. Negative regulation of growth hormone receptor signaling. Mol Endocrinol 2006;20:241–53.

    Article  PubMed  CAS  Google Scholar 

  66. Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. Embo J 1999;18:1309–20.

    Article  PubMed  CAS  Google Scholar 

  67. Hansen JA, Lindberg K, Hilton DJ, Nielsen JH, Billestrup N. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Mol Endocrinol 1999;13:1832–43.

    Article  PubMed  CAS  Google Scholar 

  68. Ram PA, Waxman DJ. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 1999;274:35553–61.

    Article  PubMed  CAS  Google Scholar 

  69. Greenhalgh CJ, Metcalf D, Thaus AL, Corbin JE, Uren R, Morgan PO, et al. Biological evidence that SOCS-2 can act either as an enhancer or suppressor of growth hormone signaling. J Biol Chem 2002;277:40181–4.

    Article  PubMed  CAS  Google Scholar 

  70. Landsman T, Waxman DJ. Role of the cytokine-induced SH2 domain-containing protein CIS in growth hormone receptor internalization. J Biol Chem 2005;280:37471–80.

    Article  PubMed  CAS  Google Scholar 

  71. Fruchtman S, Simmons JG, Michaylira CZ, Miller ME, Greenhalgh CJ, Ney DM, et al. Suppressor of cytokine signaling-2 modulates the fibrogenic actions of GH and IGF-I in intestinal mesenchymal cells. Am J Physiol Gastrointest Liver Physiol 2005;289:G342–50.

    Article  PubMed  CAS  Google Scholar 

  72. Metcalf D, Greenhalgh CJ, Viney E, Willson TA, Starr R, Nicola NA, et al. Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 2000;405:1069–73.

    Article  PubMed  CAS  Google Scholar 

  73. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 2003;4:540–5.

    Article  PubMed  CAS  Google Scholar 

  74. Starr R, Metcalf D, Elefanty AG, Brysha M, Willson TA, Nicola NA, et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc Natl Acad Sci U S A 1998;95:14395–9.

    Article  PubMed  CAS  Google Scholar 

  75. Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, et al. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 1999;98:597–608.

    Article  PubMed  CAS  Google Scholar 

  76. Leung KC, Doyle N, Ballesteros M, Sjogren K, Watts CK, Low TH, Leong GM, Ross RJ, Ho KK. Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2. Proc Natl Acad Sci U S A 2003;100:1016–21.

    Article  PubMed  CAS  Google Scholar 

  77. Johnson TS, O’Leary M, Justice SK, Maamra M, Zarkesh-Esfahani SH, Furlanetto R, et al. Differential expression of suppressors of cytokine signalling genes in response to nutrition and growth hormone in the septic rat. J Endocrinol 2001;169:409–15.

    Article  PubMed  CAS  Google Scholar 

  78. Yumet G, Shumate ML, Bryant DP, Lang CH, Cooney RN. Hepatic growth hormone resistance during sepsis is associated with increased suppressors of cytokine signaling expression and impaired growth hormone signaling. Crit Care Med 2006;34:1420–7.

    Article  PubMed  CAS  Google Scholar 

  79. Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest 2001;108:467–75.

    Article  PubMed  CAS  Google Scholar 

  80. Hackett RH, Wang YD, Sweitzer S, Feldman G, Wood WI, Larner AC. Mapping of a cytoplasmic domain of the human growth hormone receptor that regulates rates of inactivation of Jak2 and Stat proteins. J Biol Chem 1997;272:11128–32.

    Article  PubMed  CAS  Google Scholar 

  81. Kim SO, Jiang J, Yi W, Feng GS, Frank SJ. Involvement of the Src homology 2-containing tyrosine phosphatase SHP-2 in growth hormone signaling. J Biol Chem 1998;273:2344–54.

    Article  PubMed  CAS  Google Scholar 

  82. Stofega MR, Herrington J, Billestrup N, Carter-Su C. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B. Mol Endo 2000;14:1338–50.

    Article  CAS  Google Scholar 

  83. Stofega MR, Argetsinger LS, Wang H, Ullrich A, Carter-Su C. Negative regulation of growth hormone receptor/JAK2 signaling by signal regulatory protein a. J Biol Chem 2000;275:28222–9.

    PubMed  CAS  Google Scholar 

  84. Pasquali C, Curchod ML, Walchli S, Espanel X, Guerrier M, Arigoni F, Strous G, Van Huijsduijnen RH. Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Mol Endocrinol 2003;17:2228–39.

    Article  PubMed  CAS  Google Scholar 

  85. Gu F, Dube N, Kim JW, Cheng A, Ibarra-Sanchez MMJ, Tremblay ML, Boisclair YR. Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT. Mol Cell Biol 2003;23:3753–62.

    Article  PubMed  CAS  Google Scholar 

  86. Choi JH, Kim HS, Kim SH, Yang YR, Bae YS, Chang JS, et al. Phospholipase Cgamma1 negatively regulates growth hormone signalling by forming a ternary complex with Jak2 and protein tyrosine phosphatase-1B. Nat Cell Biol 2006;8:1389–97.

    Article  PubMed  CAS  Google Scholar 

  87. Govers R, ten Broeke T, van Kerkhof P, Schwartz AL, Strous GJ. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. Embo J 1999;18:28–36.

    Article  PubMed  CAS  Google Scholar 

  88. van Kerkhof P, Govers R, Alves dos Santos CM, Strous GJ. Endocytosis and degradation of the growth hormone receptor are proteasome-dependent. J Biol Chem 2000;275:1575–80.

    Article  PubMed  Google Scholar 

  89. Vespasiani Gentilucci U, Perrone G, Galati G, D’Avola D, Zardi EM, Rabitti C, et al. Subcellular shift of the hepatic growth hormone receptor with progression of hepatitis C virus-related chronic liver disease. Histopathology 2006;48:822–30.

    Article  PubMed  CAS  Google Scholar 

  90. Rico-Bautista E, Negrin-Martinez C, Novoa-Mogollon J, Fernandez-Perez L, Flores-Morales A. Downregulation of the growth hormone-induced Janus kinase 2/signal transducer and activator of transcription 5 signaling pathway requires an intact actin cytoskeleton. Exp Cell Res 2004;294:269–80.

    Article  PubMed  CAS  Google Scholar 

  91. Landman N, Kim TW. Got RIP? Presenilin-dependent intramembrane proteolysis in growth factor receptor signaling. Cytokine Growth Factor Rev 2004;15:337–51.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang Y, Jiang J, Black RA, Baumann G, Frank SJ. Tumor necrosis factor-alpha converting enzyme (TACE) is a growth hormone binding protein (GHBP) sheddase: the metalloprotease TACE/ADAM-17 is critical for (PMA-induced) GH receptor proteolysis and GHBP generation. Endocrinol 2000;141: 4342–8.

    Article  CAS  Google Scholar 

  93. Cowan JW, Wang X, Guan R, He K, Jiang J, Baumann G, et al. Growth hormone receptor is a target for presenilin-dependent gamma-secretase cleavage. J Biol Chem 2005;280:19331–42.

    Article  PubMed  CAS  Google Scholar 

  94. Linggi B, Carpenter G. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol 2006;16:649–56.

    Article  PubMed  CAS  Google Scholar 

  95. Lincoln DT, Sinowatz F, Temmim-Baker L, Baker HI, Kolle S, Waters MJ. Growth hormone receptor expression in the nucleus and cytoplasm of normal and neoplastic cells. Histochem Cell Biol 1998;109:141–59.

    Article  PubMed  CAS  Google Scholar 

  96. Gevers EF, van der Eerden BC, Karperien M, Raap AK, Robinson IC, Wit JM. Localization and regulation of the growth hormone receptor and growth hormone-binding protein in the rat growth plate. J Bone Miner Res 2002;17:1408–19.

    Article  PubMed  CAS  Google Scholar 

  97. Lobie PE, Mertani H, Morel G, Morales-Bustos O, Norstedt G, Waters MJ. Receptor-mediated nuclear translocation of growth hormone. J Biol Chem 1994;269:21330–9.

    PubMed  CAS  Google Scholar 

  98. Mertani HC, Waters MJ, Morel G. Cellular trafficking of exogenous growth hormone in dwarf rat pituitary. Neuroendocrinology 1996;63:257–68.

    PubMed  CAS  Google Scholar 

  99. Perret-Vivancos C, Abbate A, Ardail D, Raccurt M, Usson Y, Lobie PE, Morel G. Growth hormone activity in mitochondria depends on GH receptor Box 1 and involves caveolar pathway targeting. Exp Cell Res 2006;312:215–32.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Travis Maures for technical assistance. This work was supported by NIH grant RO1-DK34171. N.J.L was supported by the Training Program in Organogenesis, T-32-HD007505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christin Carter-Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanning, N.J., Carter-Su, C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord 7, 225–235 (2006). https://doi.org/10.1007/s11154-007-9025-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-007-9025-5

Keywords

Navigation