Skip to main content

Advertisement

Log in

Bisphosphonate utilization across the spectrum of eGFR

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Bisphosphonates are the most common treatment for osteoporosis but there are concerns regarding its use in CKD. We evaluated the frequency of BSP by eGFR categories among patients with osteoporosis from two healthcare systems. Our results show that 56% of patients were treated, with reduced odds in those with lower eGFR.

Introduction

Osteoporosis is common in patients with chronic kidney disease (CKD). Bisphosphonates (BSP) are the most common treatment but there are concerns regarding its efficacy and toxicity in CKD. We evaluated the frequency of BSP use by level of estimated glomerular filtration rate (eGFR) in patients with osteoporosis.

Methods

We assessed BSP use in patients with incident osteoporosis from the SCREAM-Cohort, Stockholm-Sweden, and Geisinger Healthcare, PA, USA. Osteoporosis was defined as the first encountered ICD diagnosis, and BSP use was defined as the dispensation or prescription of any BSP from 6 months prior to 3 years after the diagnosis. Multinomial logistic regression was used to account for the competing risk of death.

Results

A total of 15,719 women and 3011 men in SCREAM and 17,325 women and 3568 men in Geisinger with incident osteoporosis were included. Overall, 56% of individuals used BSP in both studies, with a higher proportion in women. After adjustments, the odds of BSP was lower across lower eGFR in SCREAM, ranging from 0.90 (0.81–0.99) for eGFR 75–89 mL/min/1.73m2 to 0.56 (0.46–0.68) for eGFR 30–44 mL/min/1.73m2 in women and from 0.72 (0.54–0.97) for eGFR of 60–74 to 0.42 (0.25–0.70) for eGFR 30–44 mL/min/1.73m2 in men. In Geisinger, odds were lower for eGFR < 30 mL/min/1.73m2 in both sexes and the frequency of BSP use dropped over time.

Conclusion

In the two healthcare systems, approximately half of the people diagnosed with osteoporosis received BSP. Practices of prescription in relation to eGFR varied, but those with lower eGFR were less likely to receive BSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29(11):2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259. https://doi.org/10.1136/bmj.312.7041.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The study of osteoporotic fractures research group. Lancet 341(8837):72–75. https://doi.org/10.1016/0140-6736(93)92555-8

    Article  CAS  PubMed  Google Scholar 

  4. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733. https://doi.org/10.1007/s00198-006-0172-4

    Article  CAS  Google Scholar 

  7. Haentjens P, Magaziner J, Colon-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B, Boonen S (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390. https://doi.org/10.7326/0003-4819-152-6-201003160-00008

    Article  PubMed  PubMed Central  Google Scholar 

  8. Katsoulis M, Benetou V, Karapetyan T, Feskanich D, Grodstein F, Pettersson-Kymmer U, Eriksson S, Wilsgaard T, Jorgensen L, Ahmed LA, Schottker B, Brenner H, Bellavia A, Wolk A, Kubinova R, Stegeman B, Bobak M, Boffetta P, Trichopoulou A (2017) Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med 281(3):300–310. https://doi.org/10.1111/joim.12586

    Article  CAS  PubMed  Google Scholar 

  9. Klawansky S, Komaroff E, Cavanaugh PF Jr, Mitchell DY, Gordon MJ, Connelly JE, Ross SD (2003) Relationship between age, renal function and bone mineral density in the US population. Osteoporos Int 14(7):570–576. https://doi.org/10.1007/s00198-003-1435-y

    Article  CAS  PubMed  Google Scholar 

  10. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58(1):396–399. https://doi.org/10.1046/j.1523-1755.2000.00178.x

    Article  CAS  PubMed  Google Scholar 

  11. Fried LF, Biggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Sarnak M, Siscovick D, Harris T, Cauley J, Newman AB, Robbins J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 18(1):282–286. https://doi.org/10.1681/asn.2006050546

    Article  PubMed  Google Scholar 

  12. Ensrud KE, Lui LY, Taylor BC, Ishani A, Shlipak MG, Stone KL, Cauley JA, Jamal SA, Antoniucci DM, Cummings SR (2007) Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 167(2):133–139. https://doi.org/10.1001/archinte.167.2.133

    Article  PubMed  Google Scholar 

  13. Runesson B, Trevisan M, Iseri K, Qureshi AR, Lindholm B, Barany P, Elinder CG, Carrero JJ (2019) Fractures and their sequelae in non-dialysis-dependent chronic kidney disease: the Stockholm CREAtinine measurements project. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfz142

  14. Ott SM (2015) Pharmacology of bisphosphonates in patients with chronic kidney disease. Semin Dial 28(4):363–369. https://doi.org/10.1111/sdi.12388

    Article  PubMed  Google Scholar 

  15. Miller PD (2007) Is there a role for bisphosphonates in chronic kidney disease? Semin Dial 20(3):186–190. https://doi.org/10.1111/j.1525-139X.2007.00271.x

    Article  PubMed  Google Scholar 

  16. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 92(1):26–36. https://doi.org/10.1016/j.kint.2017.04.006

    Article  PubMed  Google Scholar 

  17. U.S. Food and Drug Administration. FDA Drug Safety Communication: Safety update for osteoporosis drugs, bisphosphonates, and atypical fractures.

  18. Balkhi B, Seoane-Vazquez E, Rodriguez-Monguio R (2018) Changes in the utilization of osteoporosis drugs after the 2010 FDA bisphosphonate drug safety communication. Saudi Pharm J 26(2):238–243. https://doi.org/10.1016/j.jsps.2017.12.005

    Article  PubMed  Google Scholar 

  19. Runesson B, Gasparini A, Qureshi AR, Norin O, Evans M, Barany P, Wettermark B, Elinder CG, Carrero JJ (2016) The Stockholm CREAtinine Measurements (SCREAM) project: protocol overview and regional representativeness. Clin Kidney J 9(1):119–127. https://doi.org/10.1093/ckj/sfv117

    Article  PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375(9731):2073–2081. https://doi.org/10.1016/s0140-6736(10)60674-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J (2011) Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80(1):93–104. https://doi.org/10.1038/ki.2010.531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lorentzon M, Nilsson AG, Johansson H, Kanis JA, Mellstrom D, Sundh D (2019) Extensive undertreatment of osteoporosis in older Swedish women. Osteoporos Int 30(6):1297–1305. https://doi.org/10.1007/s00198-019-04872-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haussler B, Gothe H, Gol D, Glaeske G, Pientka L, Felsenberg D (2007) Epidemiology, treatment and costs of osteoporosis in Germany--the BoneEVA Study. Osteoporos Int 18(1):77–84. https://doi.org/10.1007/s00198-006-0206-y

    Article  CAS  PubMed  Google Scholar 

  25. Vestergaard P, Rejnmark L, Mosekilde L (2005) Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int 16(2):134–141. https://doi.org/10.1007/s00198-004-1680-8

    Article  PubMed  Google Scholar 

  26. Dunn P, Webb D, Olenginski TP (2018) Geisinger high-risk osteoporosis clinic (HiROC): 2013-2015 FLS performance analysis. Osteoporos Int 29(2):451–457. https://doi.org/10.1007/s00198-017-4270-2

    Article  CAS  PubMed  Google Scholar 

  27. Olenginski TP, Antohe JL, Sunderlin E, Harrington TM (2012) Appraising osteoporosis care gaps. Rheumatol Int 32(11):3619–3624. https://doi.org/10.1007/s00296-011-2203-5

    Article  PubMed  Google Scholar 

  28. Ott SM (2017) Renal osteodystrophy-time for common nomenclature. Curr Osteoporos Rep 15(3):187–193. https://doi.org/10.1007/s11914-017-0367-y

    Article  PubMed  Google Scholar 

  29. Graciolli FG, Neves KR, Barreto F, Barreto DV, Dos Reis LM, Canziani ME, Sabbagh Y, Carvalho AB, Jorgetti V, Elias RM, Schiavi S, Moyses RMA (2017) The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney Int 91(6):1436–1446. https://doi.org/10.1016/j.kint.2016.12.029

    Article  CAS  PubMed  Google Scholar 

  30. Bover J, Bailone L, Lopez-Baez V, Benito S, Ciceri P, Galassi A, Cozzolino M (2017) Osteoporosis, bone mineral density and CKD-MBD: treatment considerations. J Nephrol 30(5):677–687. https://doi.org/10.1007/s40620-017-0404-z

    Article  PubMed  Google Scholar 

  31. Steller Wagner Martins C, Jorgetti V, Moyses RMA (2018) Time to rethink the use of bone biopsy to prevent fractures in patients with chronic kidney disease. Curr Opin Nephrol Hypertens 27(4):243–250. https://doi.org/10.1097/mnh.0000000000000418

    Article  PubMed  Google Scholar 

  32. Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE (2005) Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res 20(12):2105–2115. https://doi.org/10.1359/jbmr.050817

    Article  CAS  PubMed  Google Scholar 

  33. Jamal SA, Bauer DC, Ensrud KE, Cauley JA, Hochberg M, Ishani A, Cummings SR (2007) Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial. J Bone Miner Res 22(4):503–508. https://doi.org/10.1359/jbmr.070112

    Article  CAS  PubMed  Google Scholar 

  34. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23(9):2239–2256. https://doi.org/10.1007/s00198-012-1964-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11(8):669–674. https://doi.org/10.1007/s001980070064

    Article  CAS  PubMed  Google Scholar 

  36. Inker LA, Grams ME, Levey AS, Coresh J, Cirillo M, Collins JF, Gansevoort RT, Gutierrez OM, Hamano T, Heine GH, Ishikawa S, Jee SH, Kronenberg F, Landray MJ, Miura K, Nadkarni GN, Peralta CA, Rothenbacher D, Schaeffner E, Sedaghat S, Shlipak MG, Zhang L, van Zuilen AD, Hallan SI, Kovesdy CP, Woodward M, Levin A (2019) Relationship of estimated GFR and albuminuria to concurrent laboratory abnormalities: an individual participant data meta-analysis in a global consortium. Am J Kidney Dis 73(2):206–217. https://doi.org/10.1053/j.ajkd.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  37. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whitlock RH, Leslie WD, Shaw J, Rigatto C, Thorlacius L, Komenda P, Collister D, Kanis JA, Tangri N (2019) The fracture risk assessment tool (FRAX(R)) predicts fracture risk in patients with chronic kidney disease. Kidney Int 95(2):447–454. https://doi.org/10.1016/j.kint.2018.09.022

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partly supported by the R01 Grant 5R01DK115534-02 (MEG and LAI) and by the Swedish Research Council grant 2019-01059 (JJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley A. Inker.

Ethics declarations

Conflict of interest

Dr. Evans reports funding to Karolinska Institutet from Astra Zeneca and Astellas outside this work and payment for lectures (Astellas, Vifor Pharma) and advisory board (Astra Zeneca, Astellas). Dr. Grams reports funding from the National Kidney Foundation and the NIH. Dr. Inker reports funding to Tufts Medical Center for research and contracts with the NIH, NKF, Dialysis Inc., Retrophin, Omeros, and Reata Pharmaceuticals. She has consulting agreements with Tricida. Dr. Carrero reports funding to Karolinska Institutet for research from AstraZeneca, Viforpharma, Astellas, and MSD outside the submitted work. He has performed consultation for Fresenius and Baxter. All the other authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 230 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titan, S.M., Laureati, P., Sang, Y. et al. Bisphosphonate utilization across the spectrum of eGFR. Arch Osteoporos 15, 69 (2020). https://doi.org/10.1007/s11657-020-0702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-0702-2

Keywords

Navigation