Skip to main content

Advertisement

Log in

Anaplastic Lymphoma Kinase Testing: IHC vs. FISH vs. NGS

  • Lung Cancer (HA Wakelee, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Personalized targeted therapy has emerged as a promising strategy in lung cancer treatment, with current attention focused on elucidation and detection of oncogenic drivers responsible for tumor initiation and maintenance and development of drug resistance. In lung cancer, several oncogenic drivers have been reported, triggering the application of tyrosine kinase inhibitors (TKIs) to target these dysfunctional genes. The anaplastic lymphoma kinase (ALK) rearrangement is responsible for about 4–7% of all non-small cell lung cancers (NSCLCs) and perhaps as high as a third in specific patient populations such as younger, male, non-smokers with advanced stage, epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS) wild type, and signet ring cell adenocarcinoma with abundant intracytoplasmic mucin. The selection of patients based on their ALK status is vital on account of the high response rates with the ALK-targeted agents in this subset of patients. Standardization and validation of ALK rearrangement detection methods is essential for accurate and reproducible results. There are currently three detection methods widely available in clinical practice, including fluorescent in situ hybridization (FISH), immunohistochemistry (IHC), and polymerase chain reaction (PCR)-based next generation sequencing (NGS) technology. However, the choice of diagnostic methodology for ALK rearrangement detection in clinical practice remains a matter of debate. With accumulating data enumerating the advantages and disadvantages of each of the three methods, combining more than one testing method for ALK fusion detection may be beneficial for patients. In this review, we will discuss the current methods used in ALK rearrangement detection with emphasis on their key advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361(10):958–67.

    Article  CAS  PubMed  Google Scholar 

  4. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.

    Article  CAS  PubMed  Google Scholar 

  5. Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77.

    Article  PubMed  Google Scholar 

  6. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.

    Article  CAS  PubMed  Google Scholar 

  7. Shaw AT, Kim TM, Crinò L, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(7):874–86.

    Article  CAS  PubMed  Google Scholar 

  8. Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–838.

  9. Kim DW, Tiseo M, Ahn MJ, et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J Clin Oncol. 2017;35(22):2490–8.

    Article  PubMed  Google Scholar 

  10. Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013;13(10):685–700.

    Article  CAS  PubMed  Google Scholar 

  11. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263(5151):1281–4.

    Article  CAS  PubMed  Google Scholar 

  12. Heuckmann JM, Balke-Want H, Malchers F, et al. Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin Cancer Res. 2012;18(17):4682–90.

    Article  CAS  PubMed  Google Scholar 

  13. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med. 2013;137(6):828–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kerr KM, Bubendorf L, Edelman MJ, et al. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol. 2014;25(9):1681–90.

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Zhan P, Zhou X, et al. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One. 2015;10(3):e0117032.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Casadio C, Guarize J, Donghi S, et al. Molecular testing for targeted therapy in advanced non-small cell lung cancer: suitability of endobronchial ultrasound transbronchial needle aspiration. Am J Clin Pathol. 2015;144(4):629–34.

    Article  CAS  PubMed  Google Scholar 

  17. Edwards SL, Roberts C, McKean ME, et al. Preoperative histological classification of primary lung cancer: accuracy of diagnosis and use of the non-small cell category. J Clin Pathol. 2000;53(7):537–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hiley CT, Le Quesne J, Santis G, et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet. 2016;388(10048):1002–11.

    Article  PubMed  Google Scholar 

  19. Aisner DL, Rumery MD, Merrick DT, et al. Do more with less: tips and techniques for maximizing small biopsy and cytology specimens for molecular and ancillary testing: the University of Colorado experience. Arch Pathol Lab Med. 2016;140:1206–20.

    Article  Google Scholar 

  20. Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2017;15(4):504–35.

    Article  Google Scholar 

  21. FDA Approves Xalkori with Companion Diagnostic for a Type of Late-Stage Lung Cancer. Silver Spring, MD: United States Food and Drug Administration; 2011. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202570orig1s000approv.pdf

  22. Camidge DR, Kono SA, Flacco A, et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. 2010;16(22):5581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodig SJ, Mino-Kenudson M, Dacic S, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009;15(16):5216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peled N, Palmer G, Hirsch FR, et al. Next-generation sequencing identifies and immunohistochemistry confirms a novel crizotinib-sensitive ALK rearrangement in a patient with metastatic non-small-cell lung cancer. J Thorac Oncol. 2012;7(9):e14–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Ali SM, Hensing T, Schrock AB, et al. Comprehensive genomic profiling identifies a subset of crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist. 2016;21(6):762–70. This study indicated that while FISH assay has been firmly validated, false negative results can occur and highlight the importance of combining more than one testing modality to achieve 100% accuracy with ALK rearrangement lung cancer detection, particularly in patients with likely clinical or pathologic profiles.

  26. Camidge DR, Kono SA, Flacco A, et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. 2010;16(22):5581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cooper W, Fox S, O'Toole S, et al. National Working Group Meeting on ALK diagnostics in lung cancer. Asia Pac J Clin Oncol. 2014;10(Suppl 2):11–7.

    Article  PubMed  Google Scholar 

  28. Gill RK, Yang SH, Meerzaman D, et al. Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene. 2011;30(35):3784–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumagai A, Motoi T, Tsuji K, et al. Detection of SYT and EWS gene rearrangements by dual-color break-apart CISH in liquid-based cytology samples of synovial sarcoma and Ewing sarcoma/primitive neuroectodermal tumor. Am J Clin Pathol. 2010;134(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida A, Tsuta K, Nitta H, et al. Bright-field dual-color chromogenic in situ hybridization for diagnosing echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase-positive lung adenocarcinomas. J Thorac Oncol. 2011;6(10):1677–86.

    Article  PubMed  Google Scholar 

  31. • Wagner F, Streubel A, Roth A, et al. Chromogenic in situ hybridisation (CISH) is a powerful method to detect ALK-positive non-small cell lung carcinomas. J Clin Pathol. 2014;67(5):403–7. This study demonstrated the feasibility of CISH as a potentially applicable ALK-arrangement detection method.

  32. Rodig SJ, Mino-Kenudson M, Dacic S, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009;15(16):5216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mino-Kenudson M, Chirieac LR, Law K, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010;16(5):1561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yi ES, Boland JM, Maleszewski JJ, et al. Correlation of IHC and FISH for ALK gene rearrangement in non-small cell lung carcinoma: IHC score algorithm for FISH. J Thorac Oncol. 2011;6(3):459–65.

    Article  PubMed  Google Scholar 

  35. Jokoji R, Yamasaki T, Minami S, et al. Combination of morphological feature analysis and immunohistochemistry is useful for screening of EML4-ALK-positive lung adenocarcinoma. J Clin Pathol. 2010;63(12):1066–70.

    Article  PubMed  Google Scholar 

  36. Paik JH, Choe G, Kim H, et al. Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in non-small cell lung cancer: correlation with fluorescence in situ hybridization. J Thorac Oncol. 2011;6(3):466–72.

    Article  PubMed  Google Scholar 

  37. Kim H, Yoo SB, Choe JY, et al. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression. J Thorac Oncol. 2011;6(8):1359–66.

    Article  PubMed  Google Scholar 

  38. McLeer-Florin A, Moro-Sibilot D, Melis A, et al. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. J Thorac Oncol. 2012;7(2):348–54.

    Article  PubMed  Google Scholar 

  39. Lopes LF, Bacchi CE. Anaplastic lymphoma kinase gene rearrangement in non-small-cell lung cancer in a Brazilian population. Clinics (Sao Paulo). 2012;67(7):845–7.

    Article  Google Scholar 

  40. Sholl LM, Weremowicz S, Gray SW, et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol. 2013;8(3):322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martinez P, Hernández-Losa J, Montero MÁ, et al. Fluorescence in situ hybridization and immunohistochemistry as diagnostic methods for ALK positive non-small cell lung cancer patients. PLoS One. 2013;8(1):e52261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Minca EC, Portier BP, Wang Z, et al. ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH. J Mol Diagn. 2013;15(3):341–6.

    Article  CAS  PubMed  Google Scholar 

  43. Wynes MW, Sholl LM, Dietel M, et al. An international interpretation study using the ALK IHC antibody D5F3 and a sensitive detection kit demonstrates high concordance between ALK IHC and ALK FISH and between evaluators. J Thorac Oncol. 2014;9(5):631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. VENTANA ALK (D5F3) CDx Assay - P140025: United States Food and Drug Administration; 2015. Available at: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm454476.htm

  45. Cataldo KA, Jalal SM, Law ME, et al. Detection of t (2;5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue. Am J Surg Pathol. 1999;23(11):1386–92.

    Article  CAS  PubMed  Google Scholar 

  46. • Blackhall FH, Peters S, Bubendorf L, et al. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J Clin Oncol. 2014;32(25):2780–7. The results from an European Thoracic Oncology Platform (ETOP) Lungscape Project showed that IHC 1+ have a lower probability of ALK rearrangement, suggesting that an alternative strategy using an H-score cutoff of 120 could provide a guide to select patients for FISH.

  47. • Cutz JC, Craddock KJ, Torlakovic E, et al. Canadian anaplastic lymphoma kinase study: a model for multicenter standardization and optimization of ALK testing in lung cancer. J Thorac Oncol. 2014;9(9):1255–63. Results from a prospective parallel IHC and FISH analysis study conducted by the Canadian Anaplastic Lymphoma Kinase (CALK) utilized a large number of laboratories rather than a central lab and the results suggested the lower probability of subjective interpretation of data.

    Article  CAS  PubMed  Google Scholar 

  48. Lantuejoul S, Rouquette I, Blons H, et al. French multicentric validation of ALK rearrangement diagnostic in 547 lung adenocarcinomas. Eur Respir J. 2015;46(1):207–18.

    Article  CAS  PubMed  Google Scholar 

  49. Zwaenepoel K, Van Dongen A, Lambin S, et al. Detection of ALK expression in non-small-cell lung cancer with ALK gene rearrangements—comparison of multiple immunohistochemical methods. Histopathology. 2014;65(4):539–48.

    Article  PubMed  Google Scholar 

  50. Le Quesne J, Maurya M, Yancheva SG, et al. A comparison of immunohistochemical assays and FISH in detecting the ALK translocation in diagnostic histological and cytological lung tumor material. J Thorac Oncol. 2014;9(6):769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  51. • Cabillic F, Gros A, Dugay F, et al. Parallel FISH and immunohistochemical studies of ALK status in 3244 non-small-cell lung cancers reveal major discordances. J Thorac Oncol. 2014;9(3):295–306. A French large series of parallel FISH and IHC ALK testing study highlighted the need for combining more than one testing and the feasibility of systematic NSCLC testing by both FISH and IHC in routine practice.

    Article  CAS  PubMed  Google Scholar 

  52. Cheung CC, Garratt J, Won J, et al. Developing ALK immunohistochemistry and in situ hybridization proficiency testing for non-small cell lung cancer in Canada: Canadian immunohistochemistry quality control challenges and successes. Appl Immunohistochem Mol Morphol. 2015;23(10):677–81.

    Article  CAS  PubMed  Google Scholar 

  53. Conde E, Hernandez S, Prieto M, et al. Profile of Ventana ALK (D5F3) companion diagnostic assay for non-small-cell lung carcinomas. Expert Rev Mol Diagn. 2016;16(6):707–13.

    Article  CAS  PubMed  Google Scholar 

  54. Thunnissen E, Bubendorf L, Dietel M, et al. EML4-ALK testing in non-small cell carcinomas of the lung: a review with recommendations. Virchows Arch. 2012;461(3):245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Conklin CM, Craddock KJ, Have C, et al. Immunohistochemistry is a reliable screening tool for identification of ALK rearrangement in non-small-cell lung carcinoma and is antibody dependent. J Thorac Oncol. 2013;8(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  56. Marchetti A, Ardizzoni A, Papotti M, et al. Recommendations for the analysis of ALK gene rearrangements in non-small-cell lung cancer: a consensus of the Italian Association of Medical Oncology and the Italian Society of Pathology and Cytopathology. J Thorac Oncol. 2013;8(3):352–8.

    Article  CAS  PubMed  Google Scholar 

  57. Paik JH, Choe G, Kim H, et al. Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in non-small cell lung cancer: correlation with fluorescence in situ hybridization. J Thorac Oncol. 2011;6(3):466–72.

    Article  PubMed  Google Scholar 

  58. Zhou J, Zhao J, Sun K, et al. Accurate and economical detection of ALK positive lung adenocarcinoma with semiquantitative immunohistochemical screening. PLoS One. 2014;9(3):e92828.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Houang M, Toon CW, Clarkson A, et al. Reflex ALK immunohistochemistry is feasible and highly specific for ALK gene rearrangements in lung cancer. Pathology. 2014;46(5):383–8.

    Article  CAS  PubMed  Google Scholar 

  60. Savic S, Diebold J, Zimmermann AK, et al. Screening for ALK in non-small cell lung carcinomas: 5A4 and D5F3 antibodies perform equally well, but combined use with FISH is recommended. Lung Cancer. 2015;89(2):104–9.

    Article  PubMed  Google Scholar 

  61. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med. 2013;137(6):828–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leighl NB, Rekhtman N, Biermann WA, et al. Molecular testing for selection of patients with lung cancer for epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the study of lung cancer/association for molecular pathology guideline. J Clin Oncol. 2014;32(32):3673–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Takeuchi K, Choi YL, Togashi Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15(9):3143–9.

    Article  CAS  PubMed  Google Scholar 

  64. Takeuchi K, Choi YL, Soda M, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008;14(20):6618–24.

    Article  CAS  PubMed  Google Scholar 

  65. Sanders HR, Li HR, Bruey JM, et al. Exon scanning by reverse transcriptase-polymerase chain reaction for detection of known and novel EML4-ALK fusion variants in non-small cell lung cancer. Cancer Genet. 2011;204(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  66. Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015;61(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  67. Togashi Y, Soda M, Sakata S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One. 2012;7(2):e31323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cardarella S, Johnson BE. The impact of genomic changes on treatment of lung cancer. Am J Respir Crit Care Med. 2013;188(7):770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anderson MW, Schrijver I. Next generation DNA sequencing and the future of genomic medicine. Genes (Basel). 2010;1(1):38–69.

    Article  CAS  Google Scholar 

  70. Roy-Chowdhuri S, Goswami RS, Chen H, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123(11):659–68.

    Article  CAS  PubMed  Google Scholar 

  71. Schwaederle M, Husain H, Fanta PT, et al. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay. Oncotarget. 2016;7(9):9707–17.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cui S, Zhang W, Xiong L, et al. Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer. Oncotarget. 2017;8(2):2771–80.

    PubMed  Google Scholar 

  73. • Robesova B, Bajerova M, Hausnerova J, et al. Identification of atypical ATRNL1 insertion to EML4-ALK fusion gene in NSCLC. Lung Cancer. 2015;87(3):318–20. This finding suggested the broad scope and flexibility of RT-PCR in specifying and detecting ALK rearrangements.

  74. Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L, et al. Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist. 2015;20(3):316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  75. • Iyevleva AG, Raskin GA, Tiurin VI, et al. Novel ALK fusion partners in lung cancer. Cancer Lett. 2015;362(1):116–21. This study highlighted the ability of next generation sequencing (NGS) to detect novel ALK fusion partners not inherently captured by FISH methodology.

    Article  CAS  PubMed  Google Scholar 

  76. Wong DW, Leung EL, So KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115(8):1723–33.

    Article  CAS  PubMed  Google Scholar 

  77. Soda M, Isobe K, Inoue A, et al. A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer. Clin Cancer Res. 2012;18(20):5682–9.

    Article  CAS  PubMed  Google Scholar 

  78. •• Yoshida T, Oya Y, Tanaka K, et al. Differential crizotinib response duration among ALK fusion variants in ALK-positive non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3383–9. This study highlighted the frequency of ALK variants and therapeutic efficacy of crizotinib according to the different variants in patients with ALK-positive NSCLC, suggesting that the treatment strategy for ALK-positive NSCLC should be determined on the basis of the ALK variant status of the patient

  79. Choi YL, Lira ME, Hong M, et al. A novel fusion of TPR and ALK in lung adenocarcinoma. A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol. 2014 Apr;9(4):563–6.

  80. Hong M, Kim RN, Song JY, et al. HIP1-ALK, a novel fusion protein identified in lung adenocarcinoma. J Thorac Oncol. 2014;9(3):419–22.

    Article  CAS  PubMed  Google Scholar 

  81. Fang DD, Zhang B, Gu Q, et al. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 2014;9(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  82. Huang D, Kim DW, Kotsakis A, et al. Multiplexed deep sequencing analysis of ALK kinase domain identifies resistance mutations in relapsed patients following crizotinib treatment. Genomics. 2013;102(3):157–62.

    Article  CAS  PubMed  Google Scholar 

  83. Ignatius Ou SH, Azada M, Hsiang DJ, et al. Next-generation sequencing reveals a novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J Thorac Oncol. 2014;9(4):549–53.

    Article  CAS  PubMed  Google Scholar 

  84. •• Gainor JF, Dardaei L, Yoda S, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6(10):1118–33. These results will aid the appropriate selection for the next generation ALK inhibitors by next generation sequencing (NGS) methodology following disease progression. Molecular profiling in the setting of drug resistance is an important clinical issue and underscores the role of repeat biopsies and genotyping by NGS on different generation ALK inhibitors when disease progressed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Toyokawa G, Inamasu E, Shimamatsu S, et al. Identification of a novel ALK G1123S mutation in a patient with ALK-rearranged non-small-cell lung cancer exhibiting resistance to ceritinib. J Thorac Oncol. 2015;10(7):e55–7.

    Article  PubMed  Google Scholar 

  86. Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Friboulet L, Li N, Katayama R, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4(6):662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Katayama R, Friboulet L, Koike S, et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin Cancer Res. 2014;20(22):5686–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ou SH, Greenbowe J, Khan ZU, et al. I1171 missense mutation (particularly I1171N) is a common resistance mutation in ALK-positive NSCLC patients who have progressive disease while on alectinib and is sensitive to ceritinib. Lung Cancer. 2015;88(2):231–4.

    Article  PubMed  Google Scholar 

  90. Ceccon M, Mologni L, Giudici G, et al. Treatment efficacy and resistance mechanisms using the second-generation ALK inhibitor AP26113 in human NPM-ALK-positive anaplastic large cell lymphoma. Mol Cancer Res. 2015;13(4):775–83.

    Article  CAS  PubMed  Google Scholar 

  91. Zou HY, Friboulet L, Kodack DP, et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell. 2015;28(1):70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shaw AT, Friboulet L, Leshchiner I, et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med. 2016;374(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  93. Fontana D, Ceccon M, Gambacorti-Passerini C, Mologni L. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK. Cancer Med. 2015;4(7):953–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Doebele RC, Pilling AB, Aisner DL, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18(5):1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gainor JF, Varghese AM, Ou SH, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res. 2013;19(15):4273–81.

    Article  CAS  PubMed  Google Scholar 

  96. Kodityal S, Elvin JA, Squillace R, et al. A novel acquired ALK F1245C mutation confers resistance to crizotinib in ALK-positive NSCLC but is sensitive to ceritinib. Lung Cancer. 2016;92:19–21.

    Article  PubMed  Google Scholar 

  97. •• IASLC ATLAS OF ALK TESTING IN LUNG CANCER, final edition, First IASLC Press Printing October 2013. Available at: https://www.iaslc.org/publications/iaslc-atlas-alk-testing-lung-cancer. This guide is designed to help pathologists, laboratory scientists, and practicing physicians better understand the background, protocol, and interpretation of results of ALK testing in patients with advanced NSCLC.

  98. •• IASLC ATLAS OF ALK AND ROS1 TESTING IN LUNG CANCER, second edition, First IASLC Press Printing December 2016. Available at: https://www.iaslc.org/publications/iaslc-atlas-alk-and-ros1-testing-lung-cancer. This publication is designed to help pathologists, scientists and physicians better understand the background, protocol and interpretation of results of ALK and ROS1 testing for NSCLC patients.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Wakelee MD.

Ethics declarations

Conflict of Interest

Xiaomin Niu, Jody C. Chuang, and Gerald J. Berry declare that they have no conflict of interest. Heather A. Wakelee has received research funding through grants from Novartis, Pfizer, Bristol-Myers Squibb, XCovery, Celgene, Roche/Genentech, AstraZeneca/MedImmune, Lilly, Gilead, and Pharmacyclics; has served as an unpaid consultant for Roche/Genentech; and has received compensation from Peregrine, ACEA, and Pfizer for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Chuang, J.C., Berry, G.J. et al. Anaplastic Lymphoma Kinase Testing: IHC vs. FISH vs. NGS. Curr. Treat. Options in Oncol. 18, 71 (2017). https://doi.org/10.1007/s11864-017-0513-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-017-0513-x

Keywords

Navigation