Skip to main content
Log in

Management of Pulmonary Hypertension and Right Heart Failure in the Intensive Care Unit

  • Pulmonary Hypertension (JR Klinger, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Management of acute right ventricular failure, both with and without coexisting pulmonary hypertension, is a common challenge encountered in the intensive care setting. Both right ventricular dysfunction and pulmonary hypertension portend a poor prognosis, regardless of the underlying cause and are associated with significant morbidity and mortality. The right ventricle is embryologically distinct from the left ventricle and has unique morphologic and functional properties. Management of right ventricular failure and pulmonary hypertension in the intensive care setting requires tailored hemodynamic management, pharmacotherapy, and often mechanical circulatory support. Unfortunately, our understanding of the management of right ventricular failure lags behind that of the left ventricle. In this review, we will explore the underlying pathophysiology of the failing right ventricle and pulmonary vasculature in patients with and without pulmonary hypertension and discuss management strategies based on evidence-based studies as well as our current understanding of the underlying physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RV:

Right ventricle

LV:

Left ventricle

PH:

Pulmonary hypertension

ICU:

Intensive care unit

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    PubMed  Google Scholar 

  2. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41. doi:https://doi.org/10.1016/j.jacc.2013.10.029. The Fifth World Symposium on pulmonary hypertension was held in 2013 in Nice, France and is the most current update on the classification of pulmonary hypertension. Compared to prior iterations, this update aimed better define group I pulmonary hypertension and also to create a common, comprehensive classification for both adult and pediatric patients.

    PubMed  Google Scholar 

  3. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009;34(6):1219–63. doi:https://doi.org/10.1183/09031936.00139009.

    PubMed  Google Scholar 

  4. Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br Heart J. 1990;63(1):45–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16(1):13–8.

    PubMed  Google Scholar 

  6. Greyson CR. The right ventricle and pulmonary circulation: basic concepts. Rev Esp Cardiol. 2010;63(1):81–95.

    PubMed  Google Scholar 

  7. Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.

    CAS  PubMed  Google Scholar 

  8. Green EM, Givertz MM. Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep. 2012;9(3):228–35. doi:https://doi.org/10.1007/s11897-012-0104-x.

    PubMed  Google Scholar 

  9. Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev. 2008;4(1):49–59. doi:https://doi.org/10.2174/157340308783565384.

    PubMed  PubMed Central  Google Scholar 

  10. Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure—from pathophysiology to new treatments. Intensive Care Med. 2004;30(2):185–96. doi:https://doi.org/10.1007/s00134-003-2025-3.

    PubMed  Google Scholar 

  11. Dias CA, Assad RS, Caneo LF, Abduch MC, Aiello VD, Dias AR, et al. Reversible pulmonary trunk banding. II. An experimental model for rapid pulmonary ventricular hypertrophy. J Thorac Cardiovasc Surg. 2002;124(5):999–1006.

    PubMed  Google Scholar 

  12. Chen EP, Akhter SA, Bittner HB, Koch WJ, Davis RD, Van Trigt P. Molecular and functional mechanisms of right ventricular adaptation in chronic pulmonary hypertension. Ann Thorac Surg. 1999;67(4):1053–8.

    CAS  PubMed  Google Scholar 

  13. Hoeper MM, Granton J. Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med. 2011;184(10):1114–24. doi:https://doi.org/10.1164/rccm.201104-0662CI.

    CAS  PubMed  Google Scholar 

  14. Sztrymf B, Souza R, Bertoletti L, Jaïs X, Sitbon O, Price LC, et al. Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J. 2010;35(6):1286–93. doi:https://doi.org/10.1183/09031936.00070209.

    CAS  PubMed  Google Scholar 

  15. Gille J, Seyfarth HJ, Gerlach S, Malcharek M, Czeslick E, Sablotzki A. Perioperative anesthesiological management of patients with pulmonary hypertension. Anesthesiol Res Pract. 2012;2012:356982. doi:https://doi.org/10.1155/2012/356982.

    PubMed  PubMed Central  Google Scholar 

  16. Naeije R. Physiology of the pulmonary circulation and the right heart. Curr Hypertens Rep. 2013;15(6):623–31. doi:https://doi.org/10.1007/s11906-013-0396-6.

    CAS  PubMed  Google Scholar 

  17. Apstein CS, Lorell BH. The physiological basis of left ventricular diastolic dysfunction. J Card Surg. 1988;3(4):475–85.

    CAS  PubMed  Google Scholar 

  18. Ruiter G, Lankhorst S, Boonstra A, Postmus PE, Zweegman S, Westerhof N, et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur Respir J. 2011;37(6):1386–91. doi:https://doi.org/10.1183/09031936.00100510.

    CAS  PubMed  Google Scholar 

  19. Myles PS, Hall JL, Berry CB, Esmore DS. Primary pulmonary hypertension: prolonged cardiac arrest and successful resuscitation following induction of anesthesia for heart-lung transplantation. J Cardiothorac Vasc Anesth. 1994;8(6):678–81.

    CAS  PubMed  Google Scholar 

  20. Pritts CD, Pearl RG. Anesthesia for patients with pulmonary hypertension. Curr Opin Anaesthesiol. 2010;23(3):411–6. doi:https://doi.org/10.1097/ACO.0b013e32833953fb.

    PubMed  Google Scholar 

  21. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol (1985). 2003;94(4):1543–51. doi:https://doi.org/10.1152/japplphysiol.00890.2002.

    Google Scholar 

  22. Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003;29(9):1426–34. doi:https://doi.org/10.1007/s00134-003-1873-1.

    PubMed  Google Scholar 

  23. Sarnoff SJ. Myocardial contractility as described by ventricular function curves; observations on Starling’s law of the heart. Physiol Rev. 1955;35(1):107–22.

    CAS  PubMed  Google Scholar 

  24. Cohn JN, Guiha NH, Broder MI, Limas CJ. Right ventricular infarction. Clinical and hemodynamic features. Am J Cardiol. 1974;33(2):209–14.

    CAS  PubMed  Google Scholar 

  25. Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H. Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med. 1999;27(3):540–4.

    CAS  PubMed  Google Scholar 

  26. Piazza G, Goldhaber SZ. The acutely decompensated right ventricle: pathways for diagnosis and management. Chest. 2005;128(3):1836–52. doi:https://doi.org/10.1378/chest.128.3.1836.

    PubMed  Google Scholar 

  27. Evans DC, Doraiswamy VA, Prosciak MP, Silviera M, Seamon MJ, Rodriguez Funes V, et al. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scand J Surg. 2009;98(4):199–208.

    CAS  PubMed  Google Scholar 

  28. Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care. 2010;14(5):R169. doi:https://doi.org/10.1186/cc9264.

    PubMed  PubMed Central  Google Scholar 

  29. Overgaard CB, Dzavík V. Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease. Circulation. 2008;118(10):1047–56. doi:https://doi.org/10.1161/CIRCULATIONAHA.107.728840.

    PubMed  Google Scholar 

  30. Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension*. Anaesthesia. 2002;57(1):9–14.

    CAS  PubMed  Google Scholar 

  31. Russ RD, Walker BR. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am J Physiol. 1992;262(3 Pt 2):H743–7.

    CAS  PubMed  Google Scholar 

  32. Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63(1):87–95.

    CAS  PubMed  Google Scholar 

  33. Rich S, Gubin S, Hart K. The effects of phenylephrine on right ventricular performance in patients with pulmonary hypertension. Chest. 1990;98(5):1102–6.

    CAS  PubMed  Google Scholar 

  34. D’Armini AM, Zanotti G, Ghio S, Magrini G, Pozzi M, Scelsi L, et al. Reverse right ventricular remodeling after pulmonary endarterectomy. J Thorac Cardiovasc Surg. 2007;133(1):162–8. doi:https://doi.org/10.1016/j.jtcvs.2006.08.059.

    PubMed  Google Scholar 

  35. Kramer MR, Valantine HA, Marshall SE, Starnes VA, Theodore J. Recovery of the right ventricle after single-lung transplantation in pulmonary hypertension. Am J Cardiol. 1994;73(7):494–500.

    CAS  PubMed  Google Scholar 

  36. Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353(25):2683–95. doi:https://doi.org/10.1056/NEJMra051884.

    CAS  PubMed  Google Scholar 

  37. Inglessis I, Shin JT, Lepore JJ, Palacios IF, Zapol WM, Bloch KD, et al. Hemodynamic effects of inhaled nitric oxide in right ventricular myocardial infarction and cardiogenic shock. J Am Coll Cardiol. 2004;44(4):793–8. doi:https://doi.org/10.1016/j.jacc.2004.05.047.

    CAS  PubMed  Google Scholar 

  38. Rich GF, Murphy GD, Roos CM, Johns RA. Inhaled nitric oxide. Selective pulmonary vasodilation in cardiac surgical patients. Anesthesiology. 1993;78(6):1028–35.

    CAS  PubMed  Google Scholar 

  39. Schenk P, Mittermayer C, Ratheiser K. Inhaled nitric oxide in a patient with severe pulmonary embolism. Ann Emerg Med. 1999;33(6):710–4.

    CAS  PubMed  Google Scholar 

  40. Macdonald PS, Keogh A, Mundy J, Rogers P, Nicholson A, Harrison G, et al. Adjunctive use of inhaled nitric oxide during implantation of a left ventricular assist device. J Heart Lung Transplant. 1998;17(3):312–6.

    CAS  PubMed  Google Scholar 

  41. Carrier M, Blaise G, Bélisle S, Perrault LP, Pellerin M, Petitclerc R, et al. Nitric oxide inhalation in the treatment of primary graft failure following heart transplantation. J Heart Lung Transplant. 1999;18(7):664–7.

    CAS  PubMed  Google Scholar 

  42. Christenson J, Lavoie A, O’Connor M, Bhorade S, Pohlman A, Hall JB. The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med. 2000;161(5):1443–9. doi:https://doi.org/10.1164/ajrccm.161.5.9806138.

    CAS  PubMed  Google Scholar 

  43. Channick RN, Hoch RC, Newhart JW, Johnson FW, Smith CM. Improvement in pulmonary hypertension and hypoxemia during nitric oxide inhalation in a patient with end-stage pulmonary fibrosis. Am J Respir Crit Care Med. 1994;149(3 Pt 1):811–4. doi:https://doi.org/10.1164/ajrccm.149.3.8118653.

    CAS  PubMed  Google Scholar 

  44. Khan TA, Schnickel G, Ross D, Bastani S, Laks H, Esmailian F, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg. 2009;138(6):1417–24. doi:https://doi.org/10.1016/j.jtcvs.2009.04.063.

    CAS  PubMed  Google Scholar 

  45. Hoeper MM, Olschewski H, Ghofrani HA, Wilkens H, Winkler J, Borst MM, et al. A comparison of the acute hemodynamic effects of inhaled nitric oxide and aerosolized iloprost in primary pulmonary hypertension. German PPH study group. J Am Coll Cardiol. 2000;35(1):176–82.

    CAS  PubMed  Google Scholar 

  46. Hoeper MM, Schwarze M, Ehlerding S, Adler-Schuermeyer A, Spiekerkoetter E, Niedermeyer J, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med. 2000;342(25):1866–70. doi:https://doi.org/10.1056/NEJM200006223422503.

    CAS  PubMed  Google Scholar 

  47. Sastry BK, Narasimhan C, Reddy NK, Raju BS. Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol. 2004;43(7):1149–53. doi:https://doi.org/10.1016/j.jacc.2003.10.056.

    CAS  PubMed  Google Scholar 

  48. Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001;358(9288):1119–23. doi:https://doi.org/10.1016/S0140-6736(01)06250-X.

    CAS  PubMed  Google Scholar 

  49. Ghofrani HA, Simonneau G, Rubin LJ. PATENT-1 AoC-a. Riociguat for pulmonary hypertension. N Engl J Med. 2013;369(23):2268. doi:https://doi.org/10.1056/NEJMc1312903.

    CAS  PubMed  Google Scholar 

  50. Ghofrani HA, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29. doi:https://doi.org/10.1056/NEJMoa1209657. Riociguat represents a new class of drugs, the soluble guanylate cyclase stimulators, which was shown to be beneficial in patients with chronic thromboembolic pulmonary hypertension. In patients with inoperable chronic thromboembolic pulmonary hypertension or persistent pulmonary hypertension after pulmonary embolectomy, riociguat led to a significant improvement in 6-minute walk distance, decrease in pulmonary vascular resistance, improvement in NT-proBNP and imrovement in WHO functional class.

    CAS  PubMed  Google Scholar 

  51. Ghofrani HA, Galiè N, Grimminger F, Grünig E, Humbert M, Jing ZC, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330–40. doi:https://doi.org/10.1056/NEJMoa1209655. In this randomized, double-blind study, compared to placebo, patients with pulmonary arterial hypertension treated with riociguat had improved 6-minute walk distance, pulmonary vascular resistance, NT-proBNP, WHO functional class, time to clinical worsening and Borg dyspnea score.

    CAS  PubMed  Google Scholar 

  52. Trachte AL, Lobato EB, Urdaneta F, Hess PJ, Klodell CT, Martin TD, et al. Oral sildenafil reduces pulmonary hypertension after cardiac surgery. Ann Thorac Surg. 2005;79(1):194–7. doi:https://doi.org/10.1016/j.athoracsur.2004.06.086. discussion −7.

    PubMed  Google Scholar 

  53. Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9. doi:https://doi.org/10.1161/CIRCHEARTFAILURE.108.796789.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Goldstein JA, Harada A, Yagi Y, Barzilai B, Cox JL. Hemodynamic importance of systolic ventricular interaction, augmented right atrial contractility and atrioventricular synchrony in acute right ventricular dysfunction. J Am Coll Cardiol. 1990;16(1):181–9.

    CAS  PubMed  Google Scholar 

  55. Love JC, Haffajee CI, Gore JM, Alpert JS. Reversibility of hypotension and shock by atrial or atrioventricular sequential pacing in patients with right ventricular infarction. Am Heart J. 1984;108(1):5–13.

    CAS  PubMed  Google Scholar 

  56. Topol EJ, Goldschlager N, Ports TA, Dicarlo LA, Schiller NB, Botvinick EH, et al. Hemodynamic benefit of atrial pacing in right ventricular myocardial infarction. Ann Intern Med. 1982;96(5):594–7.

    CAS  PubMed  Google Scholar 

  57. Bradfield J, Shapiro S, Finch W, Tung R, Boyle NG, Buch E, et al. Catheter ablation of typical atrial flutter in severe pulmonary hypertension. J Cardiovasc Electrophysiol. 2012;23(11):1185–90. doi:https://doi.org/10.1111/j.1540-8167.2012.02387.x.

    PubMed  Google Scholar 

  58. Garlitski AC, Mark Estes NA. Ablation of atrial flutter in severe pulmonary hypertension: pushing the outside of the envelope. J Cardiovasc Electrophysiol. 2012;23(11):1191–2. doi:https://doi.org/10.1111/j.1540-8167.2012.02401.x.

    PubMed  Google Scholar 

  59. Fang JC, DeMarco T, Givertz MM, Borlaug BA, Lewis GD, Rame JE, et al. World Health Organization Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult—a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2012;31(9):913–33. doi:https://doi.org/10.1016/j.healun.2012.06.002.

    PubMed  Google Scholar 

  60. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25 Suppl):D22–33. doi:https://doi.org/10.1016/j.jacc.2013.10.027.

    PubMed  Google Scholar 

  61. Rozkovec A, Montanes P, Oakley CM. Factors that influence the outcome of primary pulmonary hypertension. Br Heart J. 1986;55(5):449–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sandoval J, Gaspar J, Pulido T, Bautista E, Martínez-Guerra ML, Zeballos M, et al. Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension. A therapeutic alternative for patients nonresponsive to vasodilator treatment. J Am Coll Cardiol. 1998;32(2):297–304.

    CAS  PubMed  Google Scholar 

  63. Reichenberger F, Pepke-Zaba J, McNeil K, Parameshwar J, Shapiro LM. Atrial septostomy in the treatment of severe pulmonary arterial hypertension. Thorax. 2003;58(9):797–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rich S, Dodin E, McLaughlin VV. Usefulness of atrial septostomy as a treatment for primary pulmonary hypertension and guidelines for its application. Am J Cardiol. 1997;80(3):369–71.

    CAS  PubMed  Google Scholar 

  65. Blanc J, Vouhé P, Bonnet D. Potts shunt in patients with pulmonary hypertension. N Engl J Med. 2004;350(6):623. doi:https://doi.org/10.1056/NEJM200402053500623.

    CAS  PubMed  Google Scholar 

  66. Baruteau AE, Serraf A, Lévy M, Petit J, Bonnet D, Jais X, et al. Potts shunt in children with idiopathic pulmonary arterial hypertension: long-term results. Ann Thorac Surg. 2012;94(3):817–24. doi:https://doi.org/10.1016/j.athoracsur.2012.03.099.

    PubMed  Google Scholar 

  67. Esch JJ, Shah PB, Cockrill BA, Farber HW, Landzberg MJ, Mehra MR, et al. Transcatheter Potts shunt creation in patients with severe pulmonary arterial hypertension: initial clinical experience. J Heart Lung Transplant. 2013;32(4):381–7. doi:https://doi.org/10.1016/j.healun.2013.01.1049.

    PubMed  Google Scholar 

  68. Kaul TK, Kahn DR. Postinfarct refractory right ventricle: right ventricular exclusion. A possible option to mechanical cardiac support, in patients unsuitable for heart transplant. J Cardiovasc Surg (Torino). 2000;41(3):349–55.

    CAS  Google Scholar 

  69. Moazami N, Pasque MK, Moon MR, Herren RL, Bailey MS, Lawton JS, et al. Mechanical support for isolated right ventricular failure in patients after cardiotomy. J Heart Lung Transplant. 2004;23(12):1371–5. doi:https://doi.org/10.1016/j.healun.2003.09.022.

    PubMed  Google Scholar 

  70. Furukawa K, Motomura T, Nosé Y. Right ventricular failure after left ventricular assist device implantation: the need for an implantable right ventricular assist device. Artif Organs. 2005;29(5):369–77. doi:https://doi.org/10.1111/j.1525-1594.2005.29063.x.

    PubMed  Google Scholar 

  71. Klima U, Ringes-Lichtenberg S, Warnecke G, Lichtenberg A, Strüber M, Haverich A. Severe right heart failure after heart transplantation. A single-center experience. Transpl Int. 2005;18(3):326–32. doi:https://doi.org/10.1111/j.1432-2277.2004.00059.x.

    PubMed  Google Scholar 

  72. Cheung A, Freed D, Hunziker P, Leprince P. TCT-371 first clinical evaluation of a novel percutaneous right ventricular assist device: the Impella RP. J Am Coll Cardiol. 2012;60(17_S). doi:https://doi.org/10.1016/j.jacc.2012.08.399.

    Google Scholar 

  73. O’Neil WW. A prospective multicenter study to evaluate a new percutaneous ventricular assist device for right ventricular failure: the RECOVER right study. Presented at the Cardiovascular Research Foundation’s annual Transcatheter Cardiovascular Therapeutics 2014 scientific meeting in Washington, DC. 2014

  74. Belohlavek J, Rohn V, Jansa P, Tosovsky J, Kunstyr J, Semrad M, et al. Veno-arterial ECMO in severe acute right ventricular failure with pulmonary obstructive hemodynamic pattern. J Invasive Cardiol. 2010;22(8):365–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardi Gomberg-Maitland.

Ethics declarations

Conflict of Interest The University of Chicago receives research grant support from Actelion, Gilead, Novartis, Medtronic, Lung Biotechnology, and Reata for Dr. Gomberg-Maitland to be a principal investigator on research grants. Dr. Gomberg-Maitland has served as a consultant for Actelion, Bayer, Gilead, Medtronic, Merck, Bellerophon (formerly known as Ikaria), and United Therapeutics as a member of steering committees and DSMB/event committees. Jonathan Grinstein declares no conflict of interest.

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pulmonary Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinstein, J., Gomberg-Maitland, M. Management of Pulmonary Hypertension and Right Heart Failure in the Intensive Care Unit. Curr Hypertens Rep 17, 32 (2015). https://doi.org/10.1007/s11906-015-0547-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0547-z

Keywords

Navigation