Skip to main content

Advertisement

Log in

The Trabecular Bone Score (TBS) Complements DXA and the FRAX as a Fracture Risk Assessment Tool in Routine Clinical Practice

  • Therapeutics and Medical Management (S Jan de Beur and B Clarke, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the review

There is an increasing body of evidence that the trabecular bone score (TBS), a surrogate of bone microarchitecture extracted from spine DXA, could play an important role in the management of patients with osteoporosis or at risk of fracture. The current paper reviews this published body of scientific literature on TBS and answers the most relevant clinical questions.

Recent findings

TBS has repeatedly been proven to be predictive of fragility fractures, current and future, and this is largely independent of BMD, CRF, and the FRAX, and when used in conjunction with any one of these measures, it consistently enhances their accuracy. There also is a growing body of evidence indicating that the TBS has particular advantages over BMD for specific causes of increased fracture risk, like chronic corticosteroid excess, type-2 diabetes, and chronic kidney disease, and patients being treated with anti-aromatase and primary hyperparathyroidism, conditions wherein BMD readings are often misleading.

Summary

TBS enhances performance of the FRAX tool, where its greatest utility appears to lie in its ability to accurately classify those patients whose BMD level lies close to the intervention threshold, aiding in decisions on whether treatment is warranted or not. Furthermore, TBS has also particular advantages over BMD in secondary osteoporosis. While the role of TBS with monitoring could be important as the different molecules impact logically TBS to various degrees, large clinical trials are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. Scientific Advisory Board of the European Society for C, Economic Aspects of O, Osteoarthritis, the Committee of Scientific Advisors of the International Osteoporosis F European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24:23–57.

    Article  CAS  PubMed  Google Scholar 

  2. Kanis JA. Assessment of osteoporosis at the primary health-care level. Technical report. World Health Organization Collaborating Centre for Metabolic Bone Diseases. UK: University of Sheffield; 2007.

    Google Scholar 

  3. Nih Consensus Development Panel on Osteoporosis Prevention D, Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  4. Ulivieri FM, Silva BC, Sardanelli F, Hans D, Bilezikian JP, Caudarella R. Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine. 2014;47(2):435–48.

    Article  CAS  PubMed  Google Scholar 

  5. Walker-Bone K. Recognizing and treating secondary osteoporosis. Nat Rev Rheumatol. 2012;8(8):480–92.

    Article  CAS  PubMed  Google Scholar 

  6. Dalle Carbonare L, Giannini S. Bone microarchitecture as an important determinant of bone strength. J Endocrinol Investig. 2004;27(1):99–105.

    Article  CAS  Google Scholar 

  7. Link TM, Majumdar S. Current diagnostic techniques in the evaluation of bone architecture. Curr Osteoporos Rep. 2004;2(2):47–52.

    Article  PubMed  Google Scholar 

  8. Rubin CD. Emerging concepts in osteoporosis and bone strength. Curr Med Res Opin. 2005;21(7):1049–56.

    Article  PubMed  Google Scholar 

  9. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30.

    Article  PubMed  Google Scholar 

  10. • Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture Risk Prediction by non-BMD DXA measures: the 2015 ISCD Official Positions Part 2: Trabecular Bone Score. J Clin Densitom. 2015;18(3):309–30. https://doi.org/10.1016/j.jocd.2015.06.008. This paper is the offical ISCD position development outcomes on the use of TBS in clinical practice

    Article  PubMed  Google Scholar 

  11. • Harvey NC, Glüer CC, Binkley N, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24. This paper is based on the ESCEO working group which proposed the first guidelines on TBS use in clinical practice

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302–12.

    Article  PubMed  Google Scholar 

  13. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013;24(9):2455–60.

    Article  CAS  PubMed  Google Scholar 

  14. Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom. 2013;16(3):287–96.

    Article  PubMed  Google Scholar 

  15. • Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, Pietschmann P, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone. 2015;79:259–66. This study demonstrates the association between TBS and bone microachitecture as measured by bone biopsis and CT

    Article  PubMed  Google Scholar 

  16. Kolta S, Briot K, Fechtenbaum J, Paternotte S, Armbrecht G, Felsenberg D, et al. TBS result is not affected by lumbar spine osteoarthritis. Osteoporos Int. 2014;25(6):1759–64.

    Article  CAS  PubMed  Google Scholar 

  17. Padlina I, Gonzalez-Rodriguez E, Hans D, Metzger M, Stoll D, Aubry-Rozier B, et al. The lumbar spine age-related degenerative disease influences the BMD not the TBS: the Osteolaus cohort. Osteoporos Int. 2017;28(3):909-915.

  18. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom. 2009;12(2):170–6.

    Article  PubMed  Google Scholar 

  19. Leib E, Winzenrieth R, Lamy O, Hans D. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int. 2014;95(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lamy O, Krieg MA, Stoll D, Aubry-Rozier B, Metzger M, Hans D. The OsteoLaus cohort study: bone mineral density, microarchitecture score and vertebral fracture assessment extracted from a single DXA device in combination with clinical risk factors improve significantly the identification of women at high risk of fracture. Osteologie. 2012;21:77–82.

    Google Scholar 

  21. Rabier B, Heraud A, Grand-Lenoir C, Winzenrieth R, Hans D. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone. 2010;46(1):176–81.

    Article  PubMed  Google Scholar 

  22. Leslie WD, Caetano PA, Macwilliam LR, Finlayson GS. Construction and validation of a population-based bone densitometry database. J Clin Densitom. 2005;8(1):25–30.

    Article  PubMed  Google Scholar 

  23. Leslie WD, Anderson WA, Metge CJ, Manness LJ. Clinical risk factors for fracture in postmenopausal Canadian women: a population-based prevalence study. Bone. 2007;40(4):991–6.

    Article  PubMed  Google Scholar 

  24. •• Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26(11):2762–9. First prospective study on almost 30,000 women demonstrating the added value of TBS on fracture prediction

    Article  PubMed  Google Scholar 

  25. Iki M, Tamaki J, Kadowaki E, Sato Y, Dongmei N, Winzenrieth R, et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res. 2014;29(2):399–407.

    Article  PubMed  Google Scholar 

  26. Schousboe JT, Vo T, Taylor BC, et al. Prediction of incident major osteoporotic and hip fractures by trabecular bone score (TBS) and prevalent radiographic vertebral fracture in older men. J Bone Miner Res. 2016;31(3):690–7.

    Article  CAS  PubMed  Google Scholar 

  27. •• EV MC, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2016;31(5):940–8. This study is presenting the results of an individual level meta-analysis demonstrating the role of TBS in fracture prediction independently of both BMD and Clinical risk factor in both men and women

    Article  Google Scholar 

  28. Leib E, Winzenrieth R, Aubry-Rozier B, Hans D. Vertebral microarchitecture and fragility fracture in men: a TBS study. Bone. 2014;62:51–5.

    Article  CAS  PubMed  Google Scholar 

  29. Winzenrieth R, Dufour R, Pothuaud L, Hans D. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int. 2010;86(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  30. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int. 2013;24(3):991–8.

    Article  PubMed  Google Scholar 

  31. Vasic J, Petranova T, Povoroznyuk V, Barbu CG, Karadzic M, Gojkovic F, et al. Evaluating spine micro-architectural texture (via TBS) discriminates major osteoporotic fractures from controls both as well as and independent of site matched BMD: the Eastern European TBS study. J Bone Miner Metab. 2014;32(5):556–62.

    Article  CAS  PubMed  Google Scholar 

  32. Krueger D, Fidler E, Libber J, Aubry-Rozier B, Hans D, Binkley N. Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom. 2014;17(1):60–5.

    Article  PubMed  Google Scholar 

  33. Leslie WD, Krieg MA, Hans D. Manitoba bone density P. Clinical factors associated with trabecular bone score. J Clin Densitom. 2013;16(3):374–9.

    Article  PubMed  Google Scholar 

  34. Leslie WD, Johansson H, Kanis JA, Lamy O, Oden A, McCloskey EV, et al. Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int. 2014;25(9):2271–7.

    Article  CAS  PubMed  Google Scholar 

  35. •• McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. Adjusting fracture probability by trabecular bone score. Calcif Tissue Int. 2015;96(6):500–9. This study provides a thorough description of the adjustment of the FRAX by the TBS based on the Manitoba study

    Article  CAS  PubMed  Google Scholar 

  36. Leslie WD. Martineau P, Leslie WD, Johansson H, Oden A, McCloskey EV, Hans D, Kanis JA. Clinical utility of using lumbar spine trabecular bone score to adjust fracture probability: the manitoba BMD cohort. J Bone Miner Res. 2017 Mar 9. doi: https://doi.org/10.1002/jbmr.3124.

  37. Leslie WD, Aubry-Rozier B, Lamy O, Hans D. Manitoba bone density P. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98(2):602–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM. Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int. 2014;25(7):1969–73. https://doi.org/10.1007/s00198-014-2704-7.

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Choi HJ, Ku EJ, Kim KM, Kim SW, Cho NH, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab. 2015;100(2):475–82.

    Article  CAS  PubMed  Google Scholar 

  40. Neumann T, Lodes S, Kästner B, Lehmann T, Hans D, Lamy O, et al. Trabecular bone score in type 1 diabetes—a cross-sectional study. Osteoporos Int. 2016;27(1):127–33. https://doi.org/10.1007/s00198-015-3222-y.

    Article  CAS  PubMed  Google Scholar 

  41. Choi YJ, Ock SY, Chung YS. Trabecular bone score (TBS) and TBS-adjusted fracture risk assessment tool are potential supplementary tools for the discrimination of morphometric vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Densitom. 2016;19(4):507–14. https://doi.org/10.1016/j.jocd.2016.04.001.

    Article  PubMed  Google Scholar 

  42. Bonaccorsi G, Fila E, Messina C, Maietti E, Ulivieri FM, Caudarella R, Greco P, Guglielmi G. Comparison of trabecular bone score and hip structural analysis with FRAX in postmenopausal women with type 2 diabetes mellitus. Aging Clin Exp Res. 2016 Oct 8. [Epub ahead of print].

  43. Schacter GI, Leslie W. D.DXA-based measurements in diabetes: can they predict fracture risk? Calcif Tissue Int. 2017;100(2):150–64. https://doi.org/10.1007/s00223-016-0191-x.

    Article  CAS  PubMed  Google Scholar 

  44. Eller-Vainicher C, Filopanti M, Palmieri S, Ulivieri FM, Morelli V, Zhukouskaya VV, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013;169(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  45. Romagnoli E, Cipriani C, Nofroni I, Castro C, Angelozzi M, Scarpiello A, et al. “Trabecular bone score” (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone. 2013;53(1):154–9.

    Article  PubMed  Google Scholar 

  46. Silva BC, Boutroy S, Zhang C, DJ MM, Zhou B, Wang J, et al. Trabecular bone score (TBS)—a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013;98(5):1963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rolighed L, Rejnmark L, Sikjaer T, Heickendorff L, Vestergaard P, Mosekilde L, et al. Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. J Clin Endocrinol Metab. 2014;99(3):1072–80.

    Article  CAS  PubMed  Google Scholar 

  48. Cipriani C, Abraham A, Silva BC, Cusano NE, Rubin MR, McMahon DJ, et al. Skeletal changes after restoration of the euparathyroid state in patients with hypoparathyroidism and primary hyperparathyroidism. Endocrine. 2017;55(2):591–8. https://doi.org/10.1007/s12020-016-1101-8.

    Article  CAS  PubMed  Google Scholar 

  49. Kalder M, Hans D, Kyvernitakis I, Lamy O, Bauer M, Hadji P. Effects of exemestane and tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer. J Clin Densitom. 2014;17(1):66–71.

    Article  PubMed  Google Scholar 

  50. Hong AR, Kim JH, Lee KH, Kim TY, Im SA, Kim TY, et al. Long-term effect of aromatase inhibitors on bone microarchitecture and macroarchitecture in non-osteoporotic postmenopausal women with breast cancer. Osteoporos Int. 2017;28(4):1413–22. https://doi.org/10.1007/s00198-016-3899-6.

    Article  CAS  PubMed  Google Scholar 

  51. Eller-Vainicher C, Morelli V, Ulivieri FM, Palmieri S, Zhukouskaya VV, Cairoli E, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res. 2012;27(10):2223–30.

    Article  CAS  PubMed  Google Scholar 

  52. Breban S, Briot K, Kolta S, Paternotte S, Ghazi M, Fechtenbaum J, et al. Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom. 2012;15(3):260–6.

    Article  PubMed  Google Scholar 

  53. Kim D, Cho SK, Kim JY, Choi YY, Sung YK. Association between trabecular bone score and risk factors for fractures in Korean female patients with rheumatoid arthritis. Mod Rheumatol. 2016;26(4):540–5. https://doi.org/10.3109/14397595.2015.1101212.

    Article  CAS  PubMed  Google Scholar 

  54. Paggiosi MA, Peel NF, Eastell R. The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int. 2015;26(6):1773–80. https://doi.org/10.1007/s00198-015-3078-1.

    Article  CAS  PubMed  Google Scholar 

  55. Leib ES, Winzenrieth R. Bone status in glucocorticoid-treated men and women. Osteoporos Int. 2016;27(1):39–48. https://doi.org/10.1007/s00198-015-3211-1.

    Article  CAS  PubMed  Google Scholar 

  56. Saag KG, Agnusdei D, Hans D, Kohlmeier LA, Krohn KD, Leib ES, et al. Trabecular bone score in patients with chronic glucocorticoid therapy-induced osteoporosis treated with alendronate or teriparatide. Arthritis Rheumatol. 2016;68(9):2122–8. https://doi.org/10.1002/art.39726.

    Article  CAS  PubMed  Google Scholar 

  57. Chuang MH, Chuang TL, Koo M, Wang YF. Trabecular bone score reflects trabecular microarchitecture deterioration and fragility fracture in female adult patients receiving glucocorticoid therapy: a pre-post controlled study. Biomed Res Int. 2017;2017:4210217. https://doi.org/10.1155/2017/4210217.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gonzalez Rodriguez E, Lamy O, Stoll D, Metzger M, Preisig M, Kuehner C, Vollenweider P, Marques-Vidal P, Waeber G, Aubry-Rozier B, Hans D. High evening cortisol level is associated with low TBS and increased prevalent vertebral fractures. OsteoLaus study. J Clin Endocrinol Metab. 2017 Apr 4. doi: https://doi.org/10.1210/jc.2016-3804.

  59. Naylor KL, Lix LM, Hans D, Garg AX, Rush DN, Hodsman AB, et al. Trabecular bone score in kidney transplant recipients. Osteoporos Int. 2016;27(3):1115–21. https://doi.org/10.1007/s00198-015-3424-3.

    Article  CAS  PubMed  Google Scholar 

  60. Naylor KL, Prior J, Garg AX, Berger C, Langsetmo L, Adachi JD, et al. Trabecular bone score and incident fragility fracture risk in adults with reduced kidney function. Clin J Am Soc Nephrol. 2016;11(11):2032–40.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pérez-Sáez MJ, Herrera S, Prieto-Alhambra D, Nogués X, Vera M, Redondo-Pachón D, Mir M, Güerri R, Crespo M, Díez-Pérez A, Pascual J. Bone density, microarchitecture and tissue quality long-term after kidney transplant. Transplantation. 2016 Jul 27. [Epub ahead of print] PMID: 27467533.

  62. Brunerová L, Ronová P, Verešová J, Beranová P, Potoèková J, Kasalický P, et al. Osteoporosis and impaired trabecular bone score in hemodialysis patients. Kidney Blood Press Res. 2016;41(3):345–54. https://doi.org/10.1159/000443439.

    Article  PubMed  Google Scholar 

  63. Luckman M, Hans D, Cortez N, Nishiyama KK, Agarawal S, Zhang C, et al. Spine trabecular bone score as an indicator of bone microarchitecture at the peripheral skeleton in kidney transplant recipients. Clin J Am Soc Nephrol. 2017;12(4):644–52. https://doi.org/10.2215/CJN.09850916.

    Article  PubMed  Google Scholar 

  64. Popp AW, Guler S, Lamy O, Senn C, Buffat H, Perrelet R, et al. Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone Miner Res. 2013;28(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  65. Krieg MA, Aubry-Rozier B, Hans D, Leslie WD. Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int. 2013;24(3):1073–8.

    Article  CAS  PubMed  Google Scholar 

  66. Petranova T, Sheytanov I, Monov S, Nestorova R, Rashkov R. Denosumab improves bone mineral density and microarchitecture and reduces bone pain in women with osteoporosis with and without glucocorticoid treatment. Biotechnol Biotechnol Equip. 2014;28(6):1127–37.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Senn C, Gunther B, Popp AW, Perrelet R, Hans D, Lippuner K. Comparative effects of teriparatide and ibandronate on spine bone mineral density (BMD) and microarchitecture (TBS) in postmenopausal women with osteoporosis: a 2-year open-label study. Osteoporos Int. 2014;25(7):1945–51.

    Article  CAS  PubMed  Google Scholar 

  68. Kalder M, Kyvernitakis I, Albert US, Baier-Ebert M, Hadji P. Effects of zoledronic acid versus placebo on bone mineral density and bone texture analysis assessed by the trabecular bone score in premenopausal women with breast cancer treatment-induced bone loss: results of the ProBONE II substudy. Osteoporos Int. 2015;26(1):353–60.

    Article  CAS  PubMed  Google Scholar 

  69. Di Gregorio S, Del Rio L, Rodriguez-Tolra J, Bonel E, Garcia M, Winzenrieth R. Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS). Bone. 2015;75:138–43.

    Article  PubMed  Google Scholar 

  70. Maria RS, Marta PM, Sonia S, Natalia GG, Tamara M, Ignasi T, et al. TBS and BMD at the end of AI-therapy: a prospective study of the B-ABLE cohort. Bone. 2016;92:1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Hans.

Ethics declarations

Conflict of Interest

Didier Hans is the co-owner of an issued patent for TBS (Trabecular Bone Score) and has corresponding ownership shares and a position with Medimaps Group.

Emőke Šteňová and Olivier Lamy declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Therapeutics and Medical Management.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hans, D., Šteňová, E. & Lamy, O. The Trabecular Bone Score (TBS) Complements DXA and the FRAX as a Fracture Risk Assessment Tool in Routine Clinical Practice. Curr Osteoporos Rep 15, 521–531 (2017). https://doi.org/10.1007/s11914-017-0410-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0410-z

Keywords

Navigation