Skip to main content

Advertisement

Log in

Is scleroderma a vasculopathy?

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Described as an autoimmune collagen vascular disease, the most striking feature of scleroderma may be a systemic vasculopathy. This vasculopathy includes characteristic noninflammatory macrovascular and microvascular changes with dramatic and possibly occlusive formation of a thickened neointima. Scleroderma vessels also have an unusual endothelial phenotype, with loss of normal markers including vascular endothelial (VE)-cadherin. These endothelial cells express type 1 interferon and regulator of G protein signaling 5 (RGS5), two molecules associated with vascular rarefaction. These genes may be important because tissue is hypoxic with high levels of vascular endothelial growth factor (VEGF), especially early in the disease. The combination of VEGF and rarefaction is not necessarily paradoxical. VEGF-mediated angiogenesis creates labile vessels that may not survive unless the vessel acquires a smooth muscle coat. The combination of interferon and RGS5 is consistent with an antiangiogenic phenotype. We offer a hypothesis that places vascular injury at the center of this disease and also suggest possible clinical approaches for arresting and/or reversing the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. LeRoy EC: Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am 1996, 22:675–694.

    Article  PubMed  CAS  Google Scholar 

  2. Maricq HR: Capillary abnormalities, Raynaud’s phenomenon, and systemic sclerosis in patients with localized scleroderma. Arch Dermatol 1992, 128:630–632.

    Article  PubMed  CAS  Google Scholar 

  3. Carpentier PH, Satger B, Poensin D, Maricq HR: Incidence and natural history of Raynaud phenomenon: a long-term follow-up (14 years) of a random sample from the general population. J Vasc Surg 2006, 44:1023–1028.

    Article  PubMed  Google Scholar 

  4. Iwata H, Sata M: Potential contribution of bone marrow-derived precursors to vascular repair and lesion formation: lessons from animal models of vascular diseases. Front Biosci 2007, 12:4157–4167.

    Article  PubMed  CAS  Google Scholar 

  5. Passman JN, Dong XR, Wu SP, et al.: A Sonic hedgehog signaling domain in the arterial adventitia supports resident sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A 2008, 105:9349–9354.

    Article  PubMed  CAS  Google Scholar 

  6. D’Angelo WA, Fries JF, Masi AT, Shulman LE: Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med 1969, 46:428–440.

    Article  PubMed  CAS  Google Scholar 

  7. Yamagishi M, Miyatake K, Tamai J, et al.: Intravascular ultrasound detection of atherosclerosis at the site of focal vasospasm in angiographically normal or minimally narrowed coronary segments. J Am Coll Cardiol 1994, 23:352–357.

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki H, Kawai S, Aizawa T, et al.: Histological evaluation of coronary plaque in patients with variant angina: relationship between vasospasm and neointimal hyperplasia in primary coronary lesions. J Am Coll Cardiol 1999, 33:198–205.

    Article  PubMed  CAS  Google Scholar 

  9. Slomp J, van Munsteren JC, Poelmann RE, et al.: Formation of intimal cushions in the ductus arteriosus as a model for vascular intimal thickening. An immunohistochemical study of changes in extracellular matrix components. Atherosclerosis 1992, 93:25–39.

    Article  PubMed  CAS  Google Scholar 

  10. Nagy Z, Czirjak L: Nailfold digital capillaroscopy in 447 patients with connective tissue disease and Raynaud’s disease. J Eur Acad Dermatol Venereol 2004, 18:62–68.

    Article  PubMed  CAS  Google Scholar 

  11. Birkenhager R, Schneppe B, Rockl W, et al.: Synthesis and physiological activity of heterodimers comprising different splice forms of vascular endothelial growth factor and placenta growth factor. Biochem J 1996, 316:703–707.

    PubMed  Google Scholar 

  12. Distler O, Distler JH, Scheid A, et al.: Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 2004, 95:109–116.

    Article  PubMed  CAS  Google Scholar 

  13. Mulligan-Kehoe MJ, Drinane MC, Mollmark J, et al.: Antiangiogenic plasma activity in patients with systemic sclerosis. Arthritis Rheum 2007, 56:3448–3458.

    Article  PubMed  CAS  Google Scholar 

  14. Jun JB, Kuechle M, Harlan JM, Elkon KB: Fibroblast and endothelial apoptosis in systemic sclerosis. Curr Opin Rheumatol 2003, 15:756–760.

    Article  PubMed  Google Scholar 

  15. Fleming JN, Nash RA, McLeod DO, et al.: Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS ONE 2008, 3:e1452.

    Article  PubMed  CAS  Google Scholar 

  16. Del Papa N, Colombo G, Fracchiolla N, et al.: Circulating endothelial cells as a marker of ongoing vascular disease in systemic sclerosis. Arthritis Rheum 2004, 50:1296–1304.

    Article  PubMed  Google Scholar 

  17. Leroy EC: The vascular defect in scleroderma (systemic sclerosis). Acta Med Scand Suppl 1987, 715:165–167.

    PubMed  CAS  Google Scholar 

  18. Maricq HR: Comparison of quantitative and semiquantitative estimates of nailfold capillary abnormalities in scleroderma spectrum disorders. Microvasc Res 1986, 32:271–276.

    Article  PubMed  CAS  Google Scholar 

  19. Libby P, Pober JS: Chronic rejection. Immunity 2001, 14:387–397.

    Article  PubMed  CAS  Google Scholar 

  20. Corpechot C, Barbu V, Wendum D, et al.: Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002 35:1010–1021.

    Article  PubMed  CAS  Google Scholar 

  21. Sgonc R, Gruschwitz MS, Dietrich H, et al.: Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 1996, 98:785–792.

    Article  PubMed  CAS  Google Scholar 

  22. Nguyen VA, Sgonc R, Dietrich H, Wick G: Endothelial injury in internal organs of University of California at Davis line 200 (UCD 200) chickens, an animal model for systemic sclerosis (scleroderma). J Autoimmun 2000, 14:143–149.

    Article  PubMed  CAS  Google Scholar 

  23. Rouquette-Gally AM, Boyeldieu D, Gluckman E, et al.: Autoimmunity in 28 patients after allogeneic bone marrow transplantation: comparison with Sjogren syndrome and scleroderma. Br J Haematol 1987, 66:45–47.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Gilliam AC: Animal models for scleroderma: an update. Curr Rheumatol Rep 2002, 4:150–162.

    Article  PubMed  Google Scholar 

  25. Siracusa LD, Christner P, McGrath R, et al.: The tight skin (tsk) mutation in the mouse, a model for human fibrotic diseases, is tightly linked to the beta 2-microglobulin (b2m) gene on chromosome 2. Genomics 1993, 17:748–751.

    Article  PubMed  CAS  Google Scholar 

  26. Clark SH: Animal models in scleroderma. Curr Rheumatol Rep 2005, 7:150–155.

    Article  PubMed  CAS  Google Scholar 

  27. Lakos G, Takagawa S, Varga J: Animal models of scleroderma. Methods Mol Med 2004, 102:377–393.

    PubMed  Google Scholar 

  28. Ahmed SS, Tan FK, Arnett FC, et al.: Induction of apoptosis and fibrillin 1 expression in human dermal endothelial cells by scleroderma sera containing anti-endothelial cell antibodies. Arthritis Rheum 2006, 54:2250–2262.

    Article  PubMed  CAS  Google Scholar 

  29. Kahaleh MB, Fan PS: Mechanism of serum-mediated endothelial injury in scleroderma: identification of a granular enzyme in scleroderma skin and sera. Clin Immunol Immunopathol 1997, 83:32–40.

    Article  PubMed  CAS  Google Scholar 

  30. Nevskaya T, Bykovskaia S, Lyssuk E, et al.: Circulating endothelial progenitor cells in systemic sclerosis: relation to impaired angiogenesis and cardiovascular manifestations. Clin Exp Rheumatol 2008, 26:421–429.

    PubMed  CAS  Google Scholar 

  31. Abraham D, Distler O: How does endothelial cell injury start? The role of endothelin in systemic sclerosis. Arthritis Res Ther 2007, 9(Suppl 2):S2.

    Article  PubMed  CAS  Google Scholar 

  32. Anderegg U, Saalbach A, Haustein UF: Chemokine release from activated human dermal microvascular endothelial cells—implications for the pathophysiology of scleroderma? Arch Dermatol Res 2000, 292:341–347.

    Article  PubMed  CAS  Google Scholar 

  33. Hebbar M, Lassalle P, Janin A, et al.: E-selectin expression in salivary endothelial cells and sera from patients with systemic sclerosis. Role of resident mast cell-derived tumor necrosis factor alpha. Arthritis Rheum 1995, 38:406–412.

    Article  PubMed  CAS  Google Scholar 

  34. Carmeliet P: Angiogenesis in life, disease and medicine. Nature 2005, 438:932–936.

    Article  PubMed  CAS  Google Scholar 

  35. Duan H, Fleming J, Pritchard DK, et al.: Combined analysis of monocyte and lymphocyte messenger rna expression with serum protein profiles in patients with scleroderma. Arthritis Rheum 2008, 58:1465–1474.

    Article  PubMed  CAS  Google Scholar 

  36. Rozera C, Carlei D, Lollini PL, et al.: Interferon (IFN)-beta gene transfer into ts/a adenocarcinoma cells and comparison with IFN-alpha: differential effects on tumorigenicity and host response. Am J Pathol 1999, 154:1211–1222.

    PubMed  CAS  Google Scholar 

  37. Chang E, Boyd A, Nelson CC, et al.: Successful treatment of infantile hemangiomas with interferon-alpha-2b. J Pediatr Hematol Oncol 1997, 19:237–244.

    Article  PubMed  CAS  Google Scholar 

  38. Stout AJ, Gresser I, Thompson WD: Inhibition of wound healing in mice by local interferon alpha/beta injection. Int J Exp Pathol 1993, 74:79–85.

    PubMed  CAS  Google Scholar 

  39. Dor Y, Porat R, Keshet E: Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol 2001, 280:C1367–C1374.

    PubMed  CAS  Google Scholar 

  40. Cho H, Kozasa T, Bondjers C, et al.: Pericyte-specific expression of RGS5: Implications for PDGF and edg receptor signaling during vascular maturation. FASEB J 2003, 17:440–442.

    PubMed  CAS  Google Scholar 

  41. Iruela-Arispe L: Angiogenesis: novel and basic science insights and human therapy—Keystone symposium. IDrugs 2004, 7:111–113.

    PubMed  Google Scholar 

  42. Berger M, Bergers G, Arnold B, et al.: Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 2005, 105:1094–101.

    Article  PubMed  CAS  Google Scholar 

  43. Sela S, Itin A, Natanson-Yaron S, et al.: A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ Res 2008, 102:1566–1574.

    Article  PubMed  CAS  Google Scholar 

  44. Torsney E, Hu Y, Xu Q: Adventitial progenitor cells contribute to arteriosclerosis. Trends Cardiovasc Med 2005, 15:64–68.

    Article  PubMed  CAS  Google Scholar 

  45. Lavine KJ, Kovacs A, Ornitz DM: Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest 2008, 118:2404–2414.

    PubMed  CAS  Google Scholar 

  46. Lavine KJ, Long F, Choi K, et al.: Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 2008, 135:3161–3171.

    Article  PubMed  CAS  Google Scholar 

  47. Sas A, Jones R, Tyor W: Intra-peritoneal injection of polyclonal anti-interferon alpha antibodies cross the blood brain barrier and neutralize interferon alpha. Neurochem Res 2008, 33:2281–2287.

    Article  PubMed  CAS  Google Scholar 

  48. Nash RA, Bowen JD, McSweeney PA, et al.: High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 2003, 102:2364–2372.

    Article  PubMed  CAS  Google Scholar 

  49. Kim D, Peck A, Santer D, et al.: Induction of interferon-alpha by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-alpha activity with lung fibrosis. Arthritis Rheum 2008, 58:2163–2173.

    Article  PubMed  CAS  Google Scholar 

  50. Higgins DF, Kimura K, Iwano M, Haase VH: Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 2008, 7:1128–1132.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Nadine Fleming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, J.N., Nash, R.A., Mahoney, W.M. et al. Is scleroderma a vasculopathy?. Curr Rheumatol Rep 11, 103–110 (2009). https://doi.org/10.1007/s11926-009-0015-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-009-0015-3

Keywords

Navigation