Skip to main content

Advertisement

Log in

New treatments for inflammatory rheumatic disease

  • PATHOGENESIS AND THERAPY IN AUTOIMMUNE DISEASES
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

As our understanding of the pathogenesis of autoimmune diseases is growing, new therapies are being developed to target disease-specific pathways. Since the introduction of etanercept in 1998, several biotechnological agents have been developed, most of them indicated in the treatment of rheumatoid arthritis, but also psoriatic arthritis. Most currently available molecules target TNF-alfa with different strategies (i.e., etanercept, infliximab, adalimumab, golimumab, and certolizumab pegol), IL-6 (tocilizumab), CTLA-4 (abatacept), and B cells (rituximab, belimumab) as they are key mediators in the cascade of inflammation. Further, small molecules have been recently developed to target intracellular signaling, such as Janus Kinases for tofacitinib, the first FDA-approved small molecule for rheumatoid arthritis. Most novel treatments are being developed for arthritis with specific differences between rheumatoid and psoriatic arthritis, as well as for systemic lupus erythematosus, following the approval of belimumab. Finally, biologic therapies are effective also in gout, mainly targeting interleukin-1 to block the inflammasome. This review article describes the new and upcoming treatment options for rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, and gout to dissect what we should be aware of when discussing these new and promising molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choy EH, Kavanaugh AF, Jones SA. The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol. 2013;9(3):154–63. doi:10.1038/nrrheum.2013.8.

    Article  CAS  PubMed  Google Scholar 

  2. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19. doi:10.1056/NEJMra1004965. doi:10.7748/phc2011.11.21.9.29.c8797.

  3. Meune C, Touze E, Trinquart L, Allanore Y. Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford, England). 2009;48(10):1309–13. doi:10.1093/rheumatology/kep252.

  4. Gabriel SE. Heart disease and rheumatoid arthritis: understanding the risks. Ann Rheum Dis. 2010;69(Suppl 1):i61–4. doi:10.1136/ard.2009.119404.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81. doi:10.1002/art.27584.

    Article  PubMed  Google Scholar 

  6. Gladman DD. Psoriatic arthritis. Dermatol Ther. 2009;22(1):40–55. doi:10.1111/j.1529-8019.2008.01215.x.

    Article  PubMed  Google Scholar 

  7. Gabriel SE, Michaud K. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res Ther. 2009;11(3):229. doi:10.1186/ar2669.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Duarte GV, Faillace C, Freire de Carvalho J. Psoriatic arthritis. Best Pract Res Clin Rheumatol. 2012;26(1):147–56. doi:10.1016/j.berh.2012.01.003.

    Article  PubMed  Google Scholar 

  9. Taylor WJ, Helliwell PS. Development of diagnostic criteria for psoriatic arthritis: methods and process. Curr Rheumatol Rep. 2004;6(4):299–305.

    Article  PubMed  Google Scholar 

  10. Chimenti MS, Ballanti E, Perricone C, Cipriani P, Giacomelli R, Perricone R. Immunomodulation in psoriatic arthritis: focus on cellular and molecular pathways. Autoimmun Rev. 2013;12(5):599–606. doi:10.1016/j.autrev.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  11. Conigliaro P, Scrivo R, Valesini G, Perricone R. Emerging role for NK cells in the pathogenesis of inflammatory arthropathies. Autoimmun Rev. 2011;10(10):577–81. doi:10.1016/j.autrev.2011.04.017.

    Article  CAS  PubMed  Google Scholar 

  12. Lories RJ, de Vlam K. Is psoriatic arthritis a result of abnormalities in acquired or innate immunity? Curr Rheumatol Rep. 2012;14(4):375–82. doi:10.1007/s11926-012-0257-3.

    Article  CAS  PubMed  Google Scholar 

  13. Kirkham BW, Kavanaugh A, Reich K. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology. 2014;141(2):133–42. doi:10.1111/imm.12142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Scarpa R. New insights into the concept of psoriatic disease. J Rheumatol Suppl. 2012;89:4–6. doi:10.3899/jrheum.120231.

    Article  PubMed  Google Scholar 

  15. Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014;. doi:10.1016/s0140-6736(14)60128-8.

    PubMed  Google Scholar 

  16. Cozzani E, Drosera M, Gasparini G. Serology of lupus erythematosus: correlation between immunopathological features and clinical aspects. Autoimmun Dis. 2014;2014:321359. doi:10.1155/2014/321359.

    Google Scholar 

  17. Mak A, Kow NY. The pathology of T cells in systemic lupus erythematosus. J Immunol Res. 2014;2014:419029. doi:10.1155/2014/419029.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Peng H, Wang W, Zhou M, Li R, Pan HF, Ye DQ. Role of interleukin-10 and interleukin-10 receptor in systemic lupus erythematosus. Clin Rheumatol. 2013;32(9):1255–66. doi:10.1007/s10067-013-2294-3.

    Article  PubMed  Google Scholar 

  19. Candon S, Gottenberg JE, Bengoufa D, Chatenoud L, Mariette X. Quantitative assessment of antibodies to ribonucleoproteins in primary Sjogren syndrome: correlation with B-cell biomarkers and disease activity. Ann Rheum Dis. 2009;68(7):1208–12. doi:10.1136/ard.2008.095257.

    Article  CAS  PubMed  Google Scholar 

  20. Pers JO, Youinou P. Are the B cells cast with the leading part in the Sjogren’s syndrome scenario? Oral Dis. 2013;. doi:10.1111/odi.12153.

    PubMed  Google Scholar 

  21. Voulgarelis M, Tzioufas AG. Current aspects of pathogenesis in Sjogren’s Syndrome. Ther Adv Musculoskelet Dis. 2010;2(6):325–34. doi:10.1177/1759720x10381431.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Leandro MJ, Cambridge G. Expression of B cell activating factor (BAFF) and BAFF-binding receptors in rheumatoid arthritis. J Rheumatol. 2013;40(8):1247–50. doi:10.3899/jrheum.130677.

    Article  CAS  PubMed  Google Scholar 

  23. Moura RA, Canhao H, Polido-Pereira J, Rodrigues AM, Navalho M, Mourao AF, et al. BAFF and TACI gene expression are increased in patients with untreated very early rheumatoid arthritis. J Rheumatol. 2013;40(8):1293–302. doi:10.3899/jrheum.121110.

    Article  CAS  PubMed  Google Scholar 

  24. Scholz JL, Oropallo MA, Sindhava V, Goenka R, Cancro MP. The role of B lymphocyte stimulator in B cell biology: implications for the treatment of lupus. Lupus. 2013;22(4):350–60. doi:10.1177/0961203312469453.

    Article  CAS  PubMed  Google Scholar 

  25. Juraschek SP, Miller ER 3rd, Gelber AC. Body mass index, obesity, and prevalent gout in the United States in 1988–1994 and 2007–2010. Arthritis Care Res. 2013;65(1):127–32. doi:10.1002/acr.21791.

    Article  Google Scholar 

  26. Roddy E, Mallen CD, Doherty M. Gout. BMJ (Clinical Research ed). 2013;347:f5648. doi:10.1136/bmj.f5648.

  27. Horton SC, Emery P. Biological therapy for rheumatoid arthritis: where are we now? British J Hosp Med (Lond Engl: 2005). 2012;73(1):12–8.

  28. Dorner T, Strand V, Castaneda-Hernandez G, Ferraccioli G, Isaacs JD, Kvien TK, et al. The role of biosimilars in the treatment of rheumatic diseases. Ann Rheum Dis. 2013;72(3):322–8. doi:10.1136/annrheumdis-2012-202715.

    Article  PubMed  CAS  Google Scholar 

  29. Fleischmann R. Novel small-molecular therapeutics for rheumatoid arthritis. Curr Opin Rheumatol. 2012;24(3):335–41. doi:10.1097/BOR.0b013e32835190ef.

    Article  CAS  PubMed  Google Scholar 

  30. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863–9. doi:10.1136/annrheumdis-2012-201601.

    Article  CAS  PubMed  Google Scholar 

  31. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41(3):414–21. doi:10.3899/jrheum.130637.

    Article  CAS  PubMed  Google Scholar 

  32. Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P, et al. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum. 2010;62(4):929–39. doi:10.1002/art.27334.

    Article  CAS  PubMed  Google Scholar 

  33. Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS et al. A Phase II Randomized Study of Subcutaneous Ixekizumab, an Anti-Interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumat (Hoboken, NJ). 2014;66(7):1693–704. doi:10.1002/art.38617.

  34. Martin DA, Churchill M, Flores-Suarez L, Cardiel MH, Wallace D, Martin R, et al. A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis. Arthritis Res Ther. 2013;15(5):R164. doi:10.1186/ar4347.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Krausz S, Boumans MJ, Gerlag DM, Lufkin J, van Kuijk AW, Bakker A, et al. Brief report: a phase IIa, randomized, double-blind, placebo-controlled trial of apilimod mesylate, an interleukin-12/interleukin-23 inhibitor, in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(6):1750–5. doi:10.1002/art.34339.

    Article  CAS  PubMed  Google Scholar 

  36. Bugatti S, Vitolo B, Caporali R, Montecucco C, Manzo A. B cells in rheumatoid arthritis: from pathogenic players to disease biomarkers. BioMed Res Int. 2014;2014:681678. doi:10.1155/2014/681678.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mei HE, Schmidt S, Dorner T. Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther. 2012;14(Suppl 5):S1. doi:10.1186/ar3909.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Genovese MC, Kaine JL, Lowenstein MB, Del Giudice J, Baldassare A, Schechtman J, et al. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum. 2008;58(9):2652–61. doi:10.1002/art.23732.

    Article  PubMed  Google Scholar 

  39. Emery P, Rigby W, Tak PP, Dorner T, Olech E, Martin C, et al. Safety with ocrelizumab in rheumatoid arthritis: results from the ocrelizumab phase III program. PLoS One. 2014;9(2):e87379. doi:10.1371/journal.pone.0087379.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Harigai M, Tanaka Y, Maisawa S. Safety and efficacy of various dosages of ocrelizumab in Japanese patients with rheumatoid arthritis with an inadequate response to methotrexate therapy: a placebo-controlled double-blind parallel-group study. J Rheumatol. 2012;39(3):486–95. doi:10.3899/jrheum.110994.

    Article  CAS  PubMed  Google Scholar 

  41. Rigby W, Tony HP, Oelke K, Combe B, Laster A, von Muhlen CA, et al. Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum. 2012;64(2):350–9. doi:10.1002/art.33317.

    Article  CAS  PubMed  Google Scholar 

  42. Stohl W, Gomez-Reino J, Olech E, Dudler J, Fleischmann RM, Zerbini CA, et al. Safety and efficacy of ocrelizumab in combination with methotrexate in MTX-naive subjects with rheumatoid arthritis: the phase III FILM trial. Ann Rheum Dis. 2012;71(8):1289–96. doi:10.1136/annrheumdis-2011-200706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tak PP, Mease PJ, Genovese MC, Kremer J, Haraoui B, Tanaka Y, et al. Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to at least one tumor necrosis factor inhibitor: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum. 2012;64(2):360–70.

    Article  CAS  PubMed  Google Scholar 

  44. Kurrasch R, Brown JC, Chu M, Craigen J, Overend P, Patel B, et al. Subcutaneously administered ofatumumab in rheumatoid arthritis: a phase I/II study of safety, tolerability, pharmacokinetics, and pharmacodynamics. J Rheumatol. 2013;40(7):1089–96. doi:10.3899/jrheum.121118.

    Article  CAS  PubMed  Google Scholar 

  45. Ostergaard M, Baslund B, Rigby W, Rojkovich B, Jorgensen C, Dawes PT, et al. Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study. Arthritis Rheum. 2010;62(8):2227–38. doi:10.1002/art.27524.

    Article  PubMed  CAS  Google Scholar 

  46. Taylor PC, Quattrocchi E, Mallett S, Kurrasch R, Petersen J, Chang DJ. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis. 2011;70(12):2119–25. doi:10.1136/ard.2011.151522.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Stohl W, Merrill JT, McKay JD, Lisse JR, Zhong ZJ, Freimuth WW, et al. Efficacy and safety of belimumab in patients with rheumatoid arthritis: a phase II, randomized, double-blind, placebo-controlled, dose-ranging Study. J Rheumatol. 2013;40(5):579–89. doi:10.3899/jrheum.120886.

    Article  CAS  PubMed  Google Scholar 

  48. Tak PP, Thurlings RM, Rossier C, Nestorov I, Dimic A, Mircetic V, et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 2008;58(1):61–72. doi:10.1002/art.23178.

    Article  CAS  PubMed  Google Scholar 

  49. Genovese MC, Kinnman N, de La Bourdonnaye G, Pena Rossi C, Tak PP. Atacicept in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor antagonist therapy: results of a phase II, randomized, placebo-controlled, dose-finding trial. Arthritis Rheum. 2011;63(7):1793–803. doi:10.1002/art.30373.

    Article  CAS  PubMed  Google Scholar 

  50. van Vollenhoven RF, Kinnman N, Vincent E, Wax S, Bathon J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 2011;63(7):1782–92. doi:10.1002/art.30372.

    Article  PubMed  CAS  Google Scholar 

  51. Genovese MC, Bojin S, Biagini IM, Mociran E, Cristei D, Mirea G, et al. Tabalumab in rheumatoid arthritis patients with an inadequate response to methotrexate and naive to biologic therapy: a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 2013;65(4):880–9. doi:10.1002/art.37820.

    Article  CAS  PubMed  Google Scholar 

  52. Genovese MC, Fleischmann RM, Greenwald M, Satterwhite J, Veenhuizen M, Xie L, et al. Tabalumab, an anti-BAFF monoclonal antibody, in patients with active rheumatoid arthritis with an inadequate response to TNF inhibitors. Ann Rheum Dis. 2013;72(9):1461–8. doi:10.1136/annrheumdis-2012-202775.

    Article  CAS  PubMed  Google Scholar 

  53. Genovese MC, Lee E, Satterwhite J, Veenhuizen M, Disch D, Berclaz PY, et al. A phase 2 dose-ranging study of subcutaneous tabalumab for the treatment of patients with active rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis. 2013;72(9):1453–60. doi:10.1136/annrheumdis-2012-202864.

    Article  CAS  PubMed  Google Scholar 

  54. Woodrick RS, Ruderman EM. IL-6 inhibition for the treatment of rheumatoid arthritis and other conditions. Bull NYU Hosp Joint Dis. 2012;70(3):195–9.

    Google Scholar 

  55. Huizinga TW, Fleischmann RM, Jasson M, Radin AR, van Adelsberg J, Fiore S, et al. Sarilumab, a fully human monoclonal antibody against IL-6Ralpha in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial. Ann Rheum Dis. 2013;. doi:10.1136/annrheumdis-2013-204405.

    Google Scholar 

  56. Smolen JS, Weinblatt ME, Sheng S, Zhuang Y, Hsu B. Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Ann Rheum Dis. 2014;. doi:10.1136/annrheumdis-2013-205137.

    Google Scholar 

  57. Geyer M, Muller-Ladner U. Actual status of antiinterleukin-1 therapies in rheumatic diseases. Curr Opin Rheumatol. 2010;22(3):246–51. doi:10.1097/BOR.0b013e3283373fa0.

    Article  CAS  PubMed  Google Scholar 

  58. Ruckert R, Brandt K, Ernst M, Marienfeld K, Csernok E, Metzler C, et al. Interleukin-15 stimulates macrophages to activate CD4 + T cells: a role in the pathogenesis of rheumatoid arthritis? Immunology. 2009;126(1):63–73. doi:10.1111/j.1365-2567.2008.02878.x.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Hintzen C, Quaiser S, Pap T, Heinrich PC, Hermanns HM. Induction of CCL13 expression in synovial fibroblasts highlights a significant role of oncostatin M in rheumatoid arthritis. Arthritis Rheum. 2009;60(7):1932–43. doi:10.1002/art.24602.

    Article  CAS  PubMed  Google Scholar 

  60. Kay J, Calabrese L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford, England). 2004;43(Suppl 3):iii2–9. doi:10.1093/rheumatology/keh201.

  61. Mertens M, Singh JA. Anakinra for rheumatoid arthritis. Cochrane Database of Syst Rev. 2009(1):Cd005121. doi:10.1002/14651858.CD005121.pub3.

  62. Singh JA, Furst DE, Bharat A, Curtis JR, Kavanaugh AF, Kremer JM, et al. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res. 2012;64(5):625–39. doi:10.1002/acr.21641.

    Article  CAS  Google Scholar 

  63. Ikonomidis I, Lekakis JP, Nikolaou M, Paraskevaidis I, Andreadou I, Kaplanoglou T, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117(20):2662–9. doi:10.1161/circulationaha.107.731877.

    Article  CAS  PubMed  Google Scholar 

  64. Ljung L, Olsson T, Engstrand S, Wallberg-Jonsson S, Soderberg S, Rantapaa-Dahlqvist S. Interleukin-1 receptor antagonist is associated with both lipid metabolism and inflammation in rheumatoid arthritis. Clin Exp Rheumatol. 2007;25(4):617–20.

    CAS  PubMed  Google Scholar 

  65. Chakraborty A, Tannenbaum S, Rordorf C, Lowe PJ, Floch D, Gram H, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1beta monoclonal antibody. Clin Pharmacokinet. 2012;51(6):e1–18. doi:10.2165/11599820-000000000-00000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Alten R, Gomez-Reino J, Durez P, Beaulieu A, Sebba A, Krammer G, et al. Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, Phase II, dose-finding study. BMC Musculoskelet Disord. 2011;12:153. doi:10.1186/1471-2474-12-153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Masuko-Hongo K, Kurokawa M, Kobata T, Nishioka K, Kato T. Effect of IL15 on T cell clonality in vitro and in the synovial fluid of patients with rheumatoid arthritis. Ann Rheum Dis. 2000;59(9):688–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Baslund B, Tvede N, Danneskiold-Samsoe B, Larsson P, Panayi G, Petersen J, et al. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum. 2005;52(9):2686–92. doi:10.1002/art.21249.

    Article  CAS  PubMed  Google Scholar 

  69. Choy EH, Bendit M, McAleer D, Liu F, Feeney M, Brett S, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of an anti- oncostatin M monoclonal antibody in rheumatoid arthritis: results from phase II randomized, placebo-controlled trials. Arthritis Res Ther. 2013;15(5):R132. doi:10.1186/ar4312.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Keystone E, Cohen MD. Cell-signaling therapy in rheumatoid arthritis. Curr Rheumatol Rep. 2013;15(10):368. doi:10.1007/s11926-013-0368-5.

    Article  PubMed  CAS  Google Scholar 

  71. Migita K, Izumi Y, Torigoshi T, Satomura K, Izumi M, Nishino Y, et al. Inhibition of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway in rheumatoid synovial fibroblasts using small molecule compounds. Clin Exp Immunol. 2013;174(3):356–63. doi:10.1111/cei.12190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kawalec P, Mikrut A, Wisniewska N, Pilc A. The effectiveness of tofacitinib, a novel Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol. 2013;32(10):1415–24. doi:10.1007/s10067-013-2329-9.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Shi JG, Chen X, Lee F, Emm T, Scherle PA, Lo Y, et al. The pharmacokinetics, pharmacodynamics and safety of Baricitinib, an oral JAK 1/2 Inhibitor, in Healthy Volunteers. J Clin Pharmacol. 2014;. doi:10.1002/jcph.354.

    Google Scholar 

  74. Mesa RA. Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. IDrugs Investig Drugs J. 2010;13(6):394–403.

    CAS  Google Scholar 

  75. Gan EY, Chong WS, Tey HL. Therapeutic strategies in psoriasis patients with psoriatic arthritis: focus on new agents. BioDrugs Clin Immunother Biopharm Gene Ther. 2013;27(4):359–73. doi:10.1007/s40259-013-0025-6.

    CAS  Google Scholar 

  76. Kavanaugh A, Mease PJ, Gomez-Reino JJ, Adebajo AO, Wollenhaupt J, Gladman DD, et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann Rheum Dis. 2014;73(6):1020–6. doi:10.1136/annrheumdis-2013-205056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Palfreeman AC, McNamee KE, McCann FE. New developments in the management of psoriasis and psoriatic arthritis: a focus on apremilast. Drug Des Dev Ther. 2013;7:201–10. doi:10.2147/dddt.s32713.

    Article  CAS  Google Scholar 

  78. Schett G, Wollenhaupt J, Papp K, Joos R, Rodrigues JF, Vessey AR, et al. Oral apremilast in the treatment of active psoriatic arthritis: results of a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2012;64(10):3156–67. doi:10.1002/art.34627.

    Article  CAS  PubMed  Google Scholar 

  79. Wittmann M, Helliwell PS. Phosphodiesterase 4 inhibition in the treatment of psoriasis, psoriatic arthritis and other chronic inflammatory diseases. Dermatol Ther. 2013;3(1):1–15. doi:10.1007/s13555-013-0023-0.

    Article  Google Scholar 

  80. Schett G, Sloan VS, Stevens RM, Schafer P. Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Ther Adv Musculoskelet Dis. 2010;2(5):271–8. doi:10.1177/1759720x10381432.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH. Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ). 2014;66(3):538–48. doi:10.1002/art.38286.

  82. Perlman H, Bradley K, Liu H, Cole S, Shamiyeh E, Smith RC, et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J Immunol. 2003;170(2):838–45.

    Article  CAS  PubMed  Google Scholar 

  83. Filer A. The fibroblast as a therapeutic target in rheumatoid arthritis. Curr Opin Pharmacol. 2013;13(3):413–9. doi:10.1016/j.coph.2013.02.006.

    Article  CAS  PubMed  Google Scholar 

  84. Kiener HP, Niederreiter B, Lee DM, Jimenez-Boj E, Smolen JS, Brenner MB. Cadherin 11 promotes invasive behavior of fibroblast-like synoviocytes. Arthritis Rheum. 2009;60(5):1305–10. doi:10.1002/art.24453.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Bauer S, Jendro MC, Wadle A, Kleber S, Stenner F, Dinser R, et al. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res Ther. 2006;8(6):R171. doi:10.1186/ar2080.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Ospelt C, Mertens JC, Jungel A, Brentano F, Maciejewska-Rodriguez H, Huber LC, et al. Inhibition of fibroblast activation protein and dipeptidylpeptidase 4 increases cartilage invasion by rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2010;62(5):1224–35. doi:10.1002/art.27395.

    Article  CAS  PubMed  Google Scholar 

  87. El-Jawhari JJ, El-Sherbiny YM, Jones EA, McGonagle D. Mesenchymal stem cells, autoimmunity and rheumatoid arthritis. QJM Mon J Assoc Physicians. 2014;107(7):505–14. doi:10.1093/qjmed/hcu033.

    Article  CAS  Google Scholar 

  88. Huynh D, Kavanaugh A. Psoriatic arthritis: current therapy and future directions. Expert Opin Pharmacother. 2013;14(13):1755–64. doi:10.1517/14656566.2013.810208.

    Article  CAS  PubMed  Google Scholar 

  89. Gossec L, Smolen JS, Gaujoux-Viala C, Ash Z, Marzo-Ortega H, van der Heijde D, et al. European League Against Rheumatism recommendations for the management of psoriatic arthritis with pharmacological therapies. Ann Rheum Dis. 2012;71(1):4–12. doi:10.1136/annrheumdis-2011-200350.

    Article  CAS  PubMed  Google Scholar 

  90. Papoutsaki M, Costanzo A. Treatment of psoriasis and psoriatic arthritis. BioDrugs Clin Immunother Biopharm Gene Ther. 2013;27(Suppl 1):3–12. doi:10.1007/bf03325637.

    Google Scholar 

  91. Jimenez-Boj E, Stamm TA, Sadlonova M, Rovensky J, Raffayova H, Leeb B, et al. Rituximab in psoriatic arthritis: an exploratory evaluation. Ann Rheum Dis. 2012;71(11):1868–71. doi:10.1136/annrheumdis-2012-201897.

    Article  CAS  PubMed  Google Scholar 

  92. Altmeyer MD, Kerisit KG, Boh EE. Therapeutic hotline. Abatacept: our experience of use in two patients with refractory psoriasis and psoriatic arthritis. Dermatol Ther. 2011;24(2):287–90. doi:10.1111/j.1529-8019.2011.01405.x.

    Article  PubMed  Google Scholar 

  93. Rodrigues CE, Vieira FJ, Callado MR, Gomes KW, de Andrade JE, Vieira WP. Use of the abatacept in a patient with psoriatic arthritis. Revista Brasileira de Reumatologia. 2010;50(3):340–5.

    Article  PubMed  Google Scholar 

  94. Ursini F, Naty S, Russo E, Grembiale RD. Abatacept in psoriatic arthritis: case report and short review. J Pharmacol Pharmacother. 2013;4(Suppl 1):S29–32. doi:10.4103/0976-500x.120943.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Vieira FJ, Callado MR, Vieira WP. Abatacept as an option therapy in difficult to treat psoriatic arthritis. Rheumatol Int. 2010;30(6):849–50. doi:10.1007/s00296-009-1041-1.

    Article  CAS  PubMed  Google Scholar 

  96. Mease P, Genovese MC, Gladstein G, Kivitz AJ, Ritchlin C, Tak PP, et al. Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum. 2011;63(4):939–48. doi:10.1002/art.30176.

    Article  CAS  PubMed  Google Scholar 

  97. Cauli A, Mathieu A. Th17 and interleukin 23 in the pathogenesis of psoriatic arthritis and spondyloarthritis. J Rheumatol Suppl. 2012;89:15–8. doi:10.3899/jrheum.120234.

    Article  CAS  PubMed  Google Scholar 

  98. Suzuki E, Mellins ED, Gershwin ME, Nestle FO, Adamopoulos IE. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun Rev. 2014;13(4–5):496–502. doi:10.1016/j.autrev.2014.01.050.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Zhu KJ, Zhu CY, Shi G, Fan YM. Meta-analysis of IL12B polymorphisms (rs3212227, rs6887695) with psoriasis and psoriatic arthritis. Rheumatol Int. 2013;33(7):1785–90. doi:10.1007/s00296-012-2637-4.

    Article  CAS  PubMed  Google Scholar 

  100. Catanoso MG, Boiardi L, Macchioni P, Garagnani P, Sazzini M, De Fanti S, et al. IL-23A, IL-23R, IL-17A and IL-17R polymorphisms in different psoriatic arthritis clinical manifestations in the northern Italian population. Rheumatol Int. 2013;33(5):1165–76. doi:10.1007/s00296-012-2501-6.

    Article  CAS  PubMed  Google Scholar 

  101. McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382(9894):780–9. doi:10.1016/s0140-6736(13)60594-2.

    Article  CAS  PubMed  Google Scholar 

  102. Kavanaugh A, Ritchlin C, Rahman P, Puig L, Gottlieb AB, Li S, et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rheum Dis. 2014;73(6):1000–6. doi:10.1136/annrheumdis-2013-204741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Ritchlin C, Rahman P, Kavanaugh A, McInnes IB, Puig L, Li S, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73(6):990–9. doi:10.1136/annrheumdis-2013-204655.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Patel DD, Lee DM, Kolbinger F, Antoni C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis. 2013;72 (Suppl 2):ii116–23. doi:10.1136/annrheumdis-2012-202371.

  105. McInnes IB, Sieper J, Braun J, Emery P, van der Heijde D, Isaacs JD, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2014;73(2):349–56. doi:10.1136/annrheumdis-2012-202646.

    Article  CAS  PubMed  Google Scholar 

  106. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38. doi:10.1056/NEJMoa1314258.

    Article  PubMed  CAS  Google Scholar 

  107. Mease PJ, Genovese MC, Greenwald MW, Ritchlin CT, Beaulieu AD, Deodhar A, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370(24):2295–306. doi:10.1056/NEJMoa1315231.

    Article  PubMed  CAS  Google Scholar 

  108. Zouali M, Uy EA. Belimumab therapy in systemic lupus erythematosus. BioDrugs Clin Immunother Biopharm Gene Ther. 2013;27(3):225–35. doi:10.1007/s40259-013-0031-8.

    CAS  Google Scholar 

  109. Cobo-Ibanez T, Loza-Santamaria E, Pego-Reigosa JM, Marques AO, Rua-Figueroa I, Fernandez-Nebro A, et al. Efficacy and safety of rituximab in the treatment of non-renal systemic lupus erythematosus: a systematic review. Semin Arthritis Rheum. 2014;. doi:10.1016/j.semarthrit.2014.04.002.

    PubMed  Google Scholar 

  110. Bertsias GK, Tektonidou M, Amoura Z, Aringer M, Bajema I, Berden JH, et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis. 2012;71(11):1771–82. doi:10.1136/annrheumdis-2012-201940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Reddy V, Jayne D, Close D, Isenberg D. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res Ther. 2013;15(Suppl 1):S2. doi:10.1186/ar3910.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Daridon C, Blassfeld D, Reiter K, Mei HE, Giesecke C, Goldenberg DM, et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(6):R204. doi:10.1186/ar3179.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Pena-Rossi C, Nasonov E, Stanislav M, Yakusevich V, Ershova O, Lomareva N, et al. An exploratory dose-escalating study investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous atacicept in patients with systemic lupus erythematosus. Lupus. 2009;18(6):547–55. doi:10.1177/0961203309102803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Isenberg D, Gordon C, Licu D, Copt S, Rossi CP, Wofsy D. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis. 2014;. doi:10.1136/annrheumdis-2013-205067.

    Google Scholar 

  115. Merrill JT. Co-stimulatory molecules as targets for treatment of lupus. Clin Immunol (Orlando, FL). 2013;148(3):369–75. doi:10.1016/j.clim.2013.04.012.

  116. Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A, D’Cruz D, Wallace DJ, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(10):3077–87. doi:10.1002/art.27601.

    Article  CAS  PubMed  Google Scholar 

  117. Illei GG, Shirota Y, Yarboro CH, Daruwalla J, Tackey E, Takada K, et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 2010;62(2):542–52. doi:10.1002/art.27221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Xu Z, Bouman-Thio E, Comisar C, Frederick B, Van Hartingsveldt B, Marini JC, et al. Pharmacokinetics, pharmacodynamics and safety of a human anti-IL-6 monoclonal antibody (sirukumab) in healthy subjects in a first-in-human study. Br J Clin Pharmacol. 2011;72(2):270–81. doi:10.1111/j.1365-2125.2011.03964.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72(Suppl 2):ii111–5. doi:10.1136/annrheumdis-2012-202576.

  120. Sthoeger Z, Sharabi A, Mozes E. Novel approaches to the development of targeted therapeutic agents for systemic lupus erythematosus. J Autoimmun. 2014;. doi:10.1016/j.jaut.2014.06.002.

    PubMed  Google Scholar 

  121. Crittenden DB, Pillinger MH. New therapies for gout. Annu Rev Med. 2013;64:325–37. doi:10.1146/annurev-med-080911-105830.

    Article  CAS  PubMed  Google Scholar 

  122. So A, De Smedt T, Revaz S, Tschopp J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther. 2007;9(2):R28. doi:10.1186/ar2143.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Schlesinger N, De Meulemeester M, Pikhlak A, Yucel AE, Richard D, Murphy V, et al. Canakinumab relieves symptoms of acute flares and improves health-related quality of life in patients with difficult-to-treat Gouty Arthritis by suppressing inflammation: results of a randomized, dose-ranging study. Arthritis Res Ther. 2011;13(2):R53. doi:10.1186/ar3297.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Schlesinger N, Alten RE, Bardin T, Schumacher HR, Bloch M, Gimona A, et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis. 2012;71(11):1839–48. doi:10.1136/annrheumdis-2011-200908.

    Article  CAS  PubMed  Google Scholar 

  125. So A, De Meulemeester M, Pikhlak A, Yucel AE, Richard D, Murphy V, et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: Results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 2010;62(10):3064–76. doi:10.1002/art.27600.

    Article  CAS  PubMed  Google Scholar 

  126. Schlesinger N, Mysler E, Lin HY, De Meulemeester M, Rovensky J, Arulmani U, et al. Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann Rheum Dis. 2011;70(7):1264–71. doi:10.1136/ard.2010.144063.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Schumacher HR Jr, Evans RR, Saag KG, Clower J, Jennings W, Weinstein SP, et al. Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study. Arthritis Care Res. 2012;64(10):1462–70. doi:10.1002/acr.21690.

    Article  CAS  Google Scholar 

  128. Sundy JS, Schumacher HR, Kivitz A, Weinstein SP, Wu R, King-Davis S, et al. Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a Phase III, international safety study. J Rheumatol. 2014;. doi:10.3899/jrheum.131226.

    PubMed Central  Google Scholar 

  129. Goh AX, Bertin-Maghit S, Ping Yeo S, Ho AW, Derks H, Mortellaro A et al. A novel human anti-interleukin-1beta neutralizing monoclonal antibody showing in vivo efficacy. mAbs. 2014;6(3):765–73. doi:10.4161/mabs.28614.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Selmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmi, C., Generali, E., Massarotti, M. et al. New treatments for inflammatory rheumatic disease. Immunol Res 60, 277–288 (2014). https://doi.org/10.1007/s12026-014-8565-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8565-5

Keywords

Navigation