Skip to main content

Advertisement

Log in

Identifying women with increased risk of breast cancer and implementing risk-reducing strategies and supplemental imaging

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the second most common cancer in women, affecting 1 in 8 women in the United States (12.5%) in their lifetime. However, some women have a higher lifetime risk of BC because of genetic and lifestyle factors, mammographic breast density, and reproductive and hormonal factors. Because BC risk is variable, screening and prevention strategies should be individualized after considering patient-specific risk factors. Thus, health care professionals need to be able to assess risk profiles, identify high-risk women, and individualize screening and prevention strategies through a shared decision-making process. In this article, we review the risk factors for BC, risk-assessment models that identify high-risk patients, and preventive medications and lifestyle modifications that may decrease risk. We also discuss the benefits and limitations of various supplemental screening methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Aromatase inhibitor

BC:

Breast cancer

BRRM:

Bilateral risk-reducing mastectomy

CEDM:

Contrast-enhanced digital mammography

HLI:

Healthy Lifestyle Index

LCIS:

Lobular carcinoma in situ

MBD:

Mammographic breast density

MBI:

Molecular breast imaging

MHT:

Menopausal hormone therapy

MRI:

Magnetic resonance imaging

NCCN:

National Comprehensive Cancer Network

OR:

Odds ratio

PRS:

Polygenic risk score

RR:

Relative risk

RRBSO:

Risk-reducing bilateral salpingo-oophorectomy

SERM:

Selective estrogen receptor modulator

SNP:

Single nucleotide polymorphism

US:

Ultrasonography

USPSTF:

United States Preventive Services Taskforce

References

  1. Guo F, Kuo YF, Shih YCT, Giordano SH, Berenson AB. Trends in breast cancer mortality by stage at diagnosis among young women in the United States. Cancer. 2018;124(17):3500–9. https://doi.org/10.1002/cncr.31638.

    Article  PubMed  Google Scholar 

  2. Couch FJ, Hart SN, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304–11. https://doi.org/10.1200/JCO.2014.57.1414.

    Article  CAS  PubMed  Google Scholar 

  3. Olopade OI, Grushko TA, Nanda R, Huo D. Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res. 2008;14(24):7988–99. https://doi.org/10.1158/1078-0432.CCR-08-1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Newman L. US Preventive Services Task Force breast cancer recommendation statement on risk assessment, genetic counseling, and genetic testing for BRCA-related cancer. JAMA Surg. 2019;154(10):895–6. https://doi.org/10.1001/jamasurg.2019.3184.

    Article  PubMed  Google Scholar 

  5. Newman LA, Reis-Filho JS, Morrow M, Carey LA, King TA. The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: triple-negative breast cancer. Ann Surg Oncol. 2015;22(3):874–82. https://doi.org/10.1245/s10434-014-4279-0.

    Article  PubMed  Google Scholar 

  6. Frey MK, Kopparam RV, Ni Zhou Z, et al. Prevalence of nonfounder BRCA1/2 mutations in Ashkenazi Jewish patients presenting for genetic testing at a hereditary breast and ovarian cancer center. Cancer. 2019;125(5):690–7. https://doi.org/10.1002/cncr.31856.

    Article  CAS  PubMed  Google Scholar 

  7. Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16. https://doi.org/10.1001/jama.2017.7112.

    Article  CAS  PubMed  Google Scholar 

  8. Couch FJ, Nathanson KL, Offit K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science. 2014;343(6178):1466–70. https://doi.org/10.1126/science.1251827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen LY, Hu J, Tsang JYS, et al. Diagnostic upgrade of atypical ductal hyperplasia of the breast based on evaluation of histopathological features and calcification on core needle biopsy. Histopathology. 2019;75(3):320–8. https://doi.org/10.1111/his.13881.

    Article  PubMed  Google Scholar 

  10. Kim JO, Schaid DJ, Vachon CM, et al. Impact of personalized genetic breast cancer risk estimation with polygenic risk scores on preventive endocrine therapy intention and uptake. Cancer Prev Res (Phila). 2021;14(2):175–84. https://doi.org/10.1158/1940-6207.CAPR-20-0154.

    Article  Google Scholar 

  11. Nelson HD, Pappas M, Cantor A, Haney E, Holmes R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2019;322(7):666–85. https://doi.org/10.1001/jama.2019.8430.

    Article  PubMed  Google Scholar 

  12. Farkas A, Vanderberg R, Merriam S, DiNardo D. Breast cancer chemoprevention: a practical guide for the primary care provider. J Womens Health (Larchmt). 2020;29(1):46–56. https://doi.org/10.1089/jwh.2018.7643.

    Article  Google Scholar 

  13. Bilimoria MM, Morrow M. The woman at increased risk for breast cancer: evaluation and management strategies. CA Cancer J Clin. 1995;45(5):263–78. https://doi.org/10.3322/canjclin.45.5.263.

    Article  CAS  PubMed  Google Scholar 

  14. Stachs A, Stubert J, Reimer T, Hartmann S. Benign breast disease in women. Dtsch Arztebl Int. 2019;116(33–34):565–74. https://doi.org/10.3238/arztebl.2019.0565.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Racz JM, Carter JM, Degnim AC. Challenging atypical breast lesions including flat epithelial atypia, radial scar, and intraductal papilloma. Ann Surg Oncol. 2017;24(10):2842–7. https://doi.org/10.1245/s10434-017-5980-6.

    Article  PubMed  Google Scholar 

  16. Lewin AA, Mercado CL. Atypical ductal hyperplasia and lobular neoplasia: update and easing of guidelines. AJR Am J Roentgenol. 2020;214(2):265–75. https://doi.org/10.2214/AJR.19.21991.

    Article  PubMed  Google Scholar 

  17. Hartmann LC, Degnim AC, Dupont WD. Atypical hyperplasia of the breast. N Engl J Med. 2015;372(13):1271–2. https://doi.org/10.1056/NEJMc1501046.

    Article  PubMed  Google Scholar 

  18. Tomlinson-Hansen S, Khan M, Cassaro S. Atypical ductal hyperplasia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.

  19. Schiaffino S, Calabrese M, Melani EF, et al. Upgrade rate of percutaneously diagnosed pure atypical ductal hyperplasia: systematic review and meta-analysis of 6458 lesions. Radiology. 2020;294(1):76–86. https://doi.org/10.1148/radiol.2019190748.

    Article  PubMed  Google Scholar 

  20. Moon HJ, Jung I, Kim MJ, Kim EK. Breast papilloma without atypia and risk of breast carcinoma. Breast J. 2014;20(5):525–33. https://doi.org/10.1111/tbj.12309.

    Article  PubMed  Google Scholar 

  21. Salman NA, Davies G, Majidy F, et al. Association of high risk human papillomavirus and breast cancer: a UK based study. Sci Rep. 2017;7:43591. https://doi.org/10.1038/srep43591.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang Sen LQ, Berg WA, Carter GJ. Upgrade rate and imaging features of atypical apocrine lesions. Breast J. 2017;23(5):569–78. https://doi.org/10.1111/tbj.12789.

    Article  CAS  PubMed  Google Scholar 

  23. King TA, Pilewskie M, Muhsen S, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015;33(33):3945–52. https://doi.org/10.1200/JCO.2015.61.4743.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McEvoy MP, Coopey SB, Mazzola E, et al. Breast cancer risk and follow-up recommendations for young women diagnosed with atypical hyperplasia and lobular carcinoma in situ (LCIS). Ann Surg Oncol. 2015;22(10):3346–9. https://doi.org/10.1245/s10434-015-4747-1.

    Article  PubMed  Google Scholar 

  25. Wong SM, Stout NK, Punglia RS, Prakash I, Sagara Y, Golshan M. Breast cancer prevention strategies in lobular carcinoma in situ: a decision analysis. Cancer. 2017;123(14):2609–17. https://doi.org/10.1002/cncr.30644.

    Article  PubMed  Google Scholar 

  26. Masannat YA, Husain E, Roylance R, et al. Pleomorphic LCIS what do we know? A UK multicenter audit of pleomorphic lobular carcinoma in situ. Breast. 2018;38:120–4. https://doi.org/10.1016/j.breast.2017.12.011.

    Article  PubMed  Google Scholar 

  27. Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol. 1996;36:203–32. https://doi.org/10.1146/annurev.pa.36.040196.001223.

    Article  CAS  PubMed  Google Scholar 

  28. Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118,964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51. https://doi.org/10.1016/s1470-2045(12)70425-4.

    Article  PubMed Central  Google Scholar 

  29. Russo J, Mailo D, Hu YF, Balogh G, Sheriff F, Russo IH. Breast differentiation and its implication in cancer prevention. Clin Cancer Res. 2005;11(2 Pt 2):931s-s936.

    CAS  PubMed  Google Scholar 

  30. Nindrea RD, Aryandono T, Lazuardi L. Breast cancer risk from modifiable and non-modifiable risk factors among women in Southeast Asia: a meta-analysis. Asian Pac J Cancer Prev. 2017;18(12):3201–6. https://doi.org/10.22034/APJCP.2017.18.12.3201.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li X, Wang H, Xu HP, et al. Menopausal symptoms and quality of life of hormone receptor positive breast cancer patients at different endocrine therapy time. Zhonghua Zhong Liu Za Zhi. 2020;42(1):55–60. https://doi.org/10.3760/cma.j.issn.0253-3766.2020.01.008.

    Article  CAS  PubMed  Google Scholar 

  32. Kim Y, Choi JY, Lee KM, et al. Dose-dependent protective effect of breast-feeding against breast cancer among ever-lactated women in Korea. Eur J Cancer Prev. 2007;16(2):124–9. https://doi.org/10.1097/01.cej.0000228400.07364.52.

    Article  PubMed  Google Scholar 

  33. Nevler A, Shabtai E, Rosin D, Hoffman A, Gutman M, Shabtai M. Mammographic breast density as a predictor of radiological findings requiring further investigation. Isr Med Assoc J. 2016;18(1):32–5.

    PubMed  Google Scholar 

  34. Harvey JA, Yaffe MJ, D’Orsi C, Sickles EA. Density and breast cancer risk. Radiology. 2013;267(2):657–8. https://doi.org/10.1148/radiol.13122477.

    Article  PubMed  Google Scholar 

  35. Pisano E. Issues in breast cancer screening. Technol Cancer Res Treat. 2005;4(1):5–9. https://doi.org/10.1177/153303460500400102.

    Article  PubMed  Google Scholar 

  36. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09–41. Radiology. 2012;265(1):59–69. https://doi.org/10.1148/radiol.12120621.

    Article  PubMed  Google Scholar 

  37. Hayes J, Richardson A, Frampton C. Population attributable risks for modifiable lifestyle factors and breast cancer in New Zealand women. Intern Med J. 2013;43(11):1198–204. https://doi.org/10.1111/imj.12256.

    Article  CAS  PubMed  Google Scholar 

  38. Arthur R, Kirsh VA, Kreiger N, Rohan T. A healthy lifestyle index and its association with risk of breast, endometrial, and ovarian cancer among Canadian women. Cancer Causes Control. 2018;29(6):485–93. https://doi.org/10.1007/s10552-018-1032-1.

    Article  PubMed  Google Scholar 

  39. Renehan AG, Pegington M, Harvie MN, et al. Young adulthood body mass index, adult weight gain and breast cancer risk: the PROCAS Study (United Kingdom). Br J Cancer. 2020;122(10):1552–61. https://doi.org/10.1038/s41416-020-0807-9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rosner B, Eliassen AH, Toriola AT, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140(9):2003–14. https://doi.org/10.1002/ijc.30627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Allen JD, Savadatti S, Levy AG. The transition from breast cancer “patient” to “survivor.” Psychooncology. 2009;18(1):71–8. https://doi.org/10.1002/pon.1380.

    Article  PubMed  Google Scholar 

  42. Hamajima N, Hirose K, Tajima K, et al. Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87(11):1234–45. https://doi.org/10.1038/sj.bjc.6600596.

    Article  CAS  PubMed  Google Scholar 

  43. Hodis HN, Sarrel PM. Menopausal hormone therapy and breast cancer: what is the evidence from randomized trials? Climacteric. 2018;21(6):521–8. https://doi.org/10.1080/13697137.2018.1514008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Santen RJ, Heitjan DF, Gompel A, et al. Underlying breast cancer risk and menopausal hormone therapy. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgaa073.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Narod SA. Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol. 2011;8(11):669–76. https://doi.org/10.1038/nrclinonc.2011.110.

    Article  CAS  PubMed  Google Scholar 

  46. American College of O, Gynecologists’ Committee on Gynecologic P, Farrell R. ACOG Committee Opinion No. 659: The use of vaginal estrogen in women with a history of estrogen-dependent breast cancer. Obstet Gynecol. 2016;127(3):e93-6. https://doi.org/10.1097/AOG.0000000000001351.

    Article  Google Scholar 

  47. Valero MG, Zabor EC, Park A, et al. The Tyrer-Cuzick model inaccurately predicts invasive breast cancer risk in women with LCIS. Ann Surg Oncol. 2020;27(3):736–40. https://doi.org/10.1245/s10434-019-07814-w.

    Article  PubMed  Google Scholar 

  48. Ozanne EM, Howe R, Mallinson D, Esserman L, Van’t Veer LJ, Kaplan CP. Evaluation of National Comprehensive Cancer Network guideline-based Tool for Risk Assessment for breast and ovarian Cancer (N-TRAC): a patient-reported survey for genetic high-risk assessment for breast and ovarian cancers in women. J Genet Couns. 2019;28(3):507–15. https://doi.org/10.1002/jgc4.1051.

    Article  PubMed  Google Scholar 

  49. Ozanne EM, Drohan B, Bosinoff P, et al. Which risk model to use? Clinical implications of the ACS MRI screening guidelines. Cancer Epidemiol Biomark Prev. 2013;22(1):146–9. https://doi.org/10.1158/1055-9965.EPI-12-0570.

    Article  Google Scholar 

  50. Mazzola E, Blackford A, Parmigiani G, Biswas S. Recent enhancements to the genetic risk prediction model BRCAPRO. Cancer Inform. 2015;14(Suppl 2):147–57. https://doi.org/10.4137/CIN.S17292.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst. 2010;102(10):680–91. https://doi.org/10.1093/jnci/djq088.

    Article  PubMed  Google Scholar 

  52. Wang X, Huang Y, Li L, Dai H, Song F, Chen K. Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis. Breast Cancer Res. 2018;20(1):18. https://doi.org/10.1186/s13058-018-0947-5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Niehoff NM, White AJ, Sandler DP. Physical activity and breast cancer: focusing on high-risk subgroups and putting recommendations in context. Cancer Res. 2020;80(1):23–4. https://doi.org/10.1158/0008-5472.CAN-19-3350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tice JA, Bissell MCS, Miglioretti DL, et al. Validation of the breast cancer surveillance consortium model of breast cancer risk. Breast Cancer Res Treat. 2019;175(2):519–23. https://doi.org/10.1007/s10549-019-05167-2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol. 2018;15(3 Pt A):408–14. https://doi.org/10.1016/j.jacr.2017.11.034.

    Article  PubMed  Google Scholar 

  56. Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat. 2012;132(2):365–77. https://doi.org/10.1007/s10549-011-1818-2.

    Article  PubMed  Google Scholar 

  57. Vecchio MM. Breast cancer screening in the high-risk population. Asia Pac J Oncol Nurs. 2018;5(1):46–50. https://doi.org/10.4103/apjon.apjon_53_17.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89. https://doi.org/10.3322/canjclin.57.2.75.

    Article  PubMed  Google Scholar 

  59. Warner E, Plewes DB, Hill KA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292(11):1317–25. https://doi.org/10.1001/jama.292.11.1317.

    Article  CAS  PubMed  Google Scholar 

  60. Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394–404. https://doi.org/10.1001/jama.2012.388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37. https://doi.org/10.1056/NEJMoa031759.

    Article  CAS  PubMed  Google Scholar 

  62. Tosteson ANA. An abbreviated MRI protocol for breast cancer screening in women with dense breasts: promising results, but further evaluation required prior to widespread implementation. JAMA. 2020;323(8):719–21. https://doi.org/10.1001/jama.2020.0357.

    Article  PubMed  Google Scholar 

  63. Saulsberry L, Pace LE, Keating NL. The impact of breast density notification laws on supplemental breast imaging and breast biopsy. J Gen Intern Med. 2019;34(8):1441–51. https://doi.org/10.1007/s11606-019-05026-2.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Geisel J, Raghu M, Hooley R. The role of ultrasound in breast cancer screening: the case for and against ultrasound. Semin Ultrasound CT MR. 2018;39(1):25–34. https://doi.org/10.1053/j.sult.2017.09.006.

    Article  PubMed  Google Scholar 

  65. Zuley ML, Bandos AI, Abrams GS, et al. Contrast enhanced digital mammography (CEDM) helps to safely reduce benign breast biopsies for low to moderately suspicious soft tissue lesions. Acad Radiol. 2020;27(7):969–76. https://doi.org/10.1016/j.acra.2019.07.020.

    Article  PubMed  Google Scholar 

  66. Sumkin JH, Berg WA, Carter GJ, et al. Diagnostic performance of MRI, molecular breast imaging, and contrast-enhanced mammography in women with newly diagnosed breast cancer. Radiology. 2019;293(3):531–40. https://doi.org/10.1148/radiol.2019190887.

    Article  PubMed  Google Scholar 

  67. Sorin V, Yagil Y, Yosepovich A, et al. Contrast-enhanced spectral mammography in women with intermediate breast cancer risk and dense breasts. AJR Am J Roentgenol. 2018;211(5):W267–74. https://doi.org/10.2214/AJR.17.19355.

    Article  PubMed  Google Scholar 

  68. Rhodes DJ, Hruska CB, Conners AL, et al. Journal club: molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts. AJR Am J Roentgenol. 2015;204(2):241–51. https://doi.org/10.2214/ajr.14.13357.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Evans A, Trimboli RM, Athanasiou A, et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. 2018;9(4):449–61. https://doi.org/10.1007/s13244-018-0636-z.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Moyer VA, US Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(4):271–81. https://doi.org/10.7326/M13-2747.

    Article  PubMed  Google Scholar 

  71. Visvanathan K, Hurley P, Bantug E, et al. Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(23):2942–62. https://doi.org/10.1200/JCO.2013.49.3122.

    Article  PubMed  Google Scholar 

  72. Henry NL, Chan HP, Dantzer J, et al. Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects. Br J Cancer. 2013;109(9):2331–9. https://doi.org/10.1038/bjc.2013.587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu JH. Selective estrogen receptor modulators (SERMS): keys to understanding their function. Menopause. 2020. https://doi.org/10.1097/GME.0000000000001585.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Guerrieri-Gonzaga A, Sestak I, Lazzeroni M, et al. Benefit of low-dose tamoxifen in a large observational cohort of high risk ER positive breast DCIS. Int J Cancer. 2016;139(9):2127–34. https://doi.org/10.1002/ijc.30254.

    Article  CAS  PubMed  Google Scholar 

  75. McIntosh JG, Minshall J, Saya S, et al. Benefits and harms of selective oestrogen receptor modulators (SERMs) to reduce breast cancer risk: a cross-sectional study of methods to communicate risk in primary care. Br J Gen Pract. 2019;69(689):e836–42. https://doi.org/10.3399/bjgp19X706841.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cuzick J, Sestak I, Forbes JF, et al. Use of anastrozole for breast cancer prevention (IBIS-II): long-term results of a randomised controlled trial. Lancet. 2020;395(10218):117–22. https://doi.org/10.1016/S0140-6736(19)32955-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sini V, Botticelli A, Lunardi G, Gori S, Marchetti P. Pharmacogenetics and aromatase inhibitor induced side effects in breast cancer patients. Pharmacogenomics. 2017;18(8):821–30. https://doi.org/10.2217/pgs-2017-0006.

    Article  CAS  PubMed  Google Scholar 

  78. Tseng OL, Spinelli JJ, Gotay CC, Ho WY, McBride ML, Dawes MG. Aromatase inhibitors are associated with a higher fracture risk than tamoxifen: a systematic review and meta-analysis. Ther Adv Musculoskelet Dis. 2018;10(4):71–90. https://doi.org/10.1177/1759720X18759291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Narod SA, Brunet JS, Ghadirian P, et al. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study Hereditary Breast Cancer Clinical Study Group. Lancet. 2000;356(9245):1876–81. https://doi.org/10.1016/s0140-6736(00)03258-x.

    Article  CAS  PubMed  Google Scholar 

  80. Cuzick J, Sestak I, Thorat MA. Impact of preventive therapy on the risk of breast cancer among women with benign breast disease. Breast. 2015;24(Suppl 2):S51–5. https://doi.org/10.1016/j.breast.2015.07.013.

    Article  PubMed  Google Scholar 

  81. Li X, You R, Wang X, et al. Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: a meta-analysis and systematic review. Clin Cancer Res. 2016;22(15):3971–81. https://doi.org/10.1158/1078-0432.CCR-15-1465.

    Article  CAS  PubMed  Google Scholar 

  82. De Felice F, Marchetti C, Musella A, et al. Bilateral risk-reduction mastectomy in BRCA1 and BRCA2 mutation carriers: a meta-analysis. Ann Surg Oncol. 2015;22(9):2876–80. https://doi.org/10.1245/s10434-015-4532-1.

    Article  PubMed  Google Scholar 

  83. Gamble C, Havrilesky LJ, Myers ER, et al. Cost effectiveness of risk-reducing mastectomy versus surveillance in BRCA mutation carriers with a history of ovarian cancer. Ann Surg Oncol. 2017;24(11):3116–23. https://doi.org/10.1245/s10434-017-5995-z.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Co M, Chiu R, Chiu TM, et al. Nipple-sparing mastectomy and its application on BRCA gene mutation carrier. Clin Breast Cancer. 2017;17(8):581–4. https://doi.org/10.1016/j.clbc.2017.02.001.

    Article  PubMed  Google Scholar 

  85. Bellanger M, Barry K, Rana J, Regnaux JP. Cost-effectiveness of lifestyle-related interventions for the primary prevention of breast cancer: a rapid review. Front Med (Lausanne). 2019;6:325. https://doi.org/10.3389/fmed.2019.00325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Who had the idea for the article: SV. Who performed the literature search and data analysis: all authors. Who drafted and/or critically revised the work: all authors.

Corresponding author

Correspondence to Suneela Vegunta.

Ethics declarations

Conflict of interest

No competing financial interests exist.

Research involving human participants and/or animals

Not applicable for this review article.

Informed consent

Not applicable for this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vegunta, S., Bhatt, A.A., Choudhery, S.A. et al. Identifying women with increased risk of breast cancer and implementing risk-reducing strategies and supplemental imaging. Breast Cancer 29, 19–29 (2022). https://doi.org/10.1007/s12282-021-01298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-021-01298-x

Keywords

Navigation