Skip to main content

Advertisement

Log in

Cisplatin nephrotoxicity: a review of the literature

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Cisplatin is a platinum containing drug first approved as an antineoplastic agent in 1978. It remains an important and effective therapy in many forms of cancer today. Cisplatin mediates its tumorcidal effects via a number of different cytotoxic mechanisms. Although it is best known for DNA damage, cisplatin also causes cytoplasmic organelle dysfunction particularly with the endoplasmic reticulum and mitochondria. It also activates apoptotic pathways and inflicts cellular damage via oxidative stress and inflammation. One of its dose limiting toxicities is its effects on the kidney. This includes acute kidney injury as well as tubular injury resulting in electrolyte wasting. Extensive research has found that cisplatin entry into a cell is facilitated by a number of cellular transporters including human copper transport protein 1 (Ctr1) and the organic cation transporter 2 (OCT2) which are expressed on renal tubular cells. The interactions between the mechanisms of cytotoxicity and cellular transport play an important role in the nephrotoxicity. Better understanding of these interactions could one day help devise better renoprotection that would not reduce its anti-tumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Prestayko AW, Crooke ST, Carter SK, University of Alabama in Birmingham (1980) Comprehensive Cancer Center., Bristol Laboratories.: Cisplatin, current status and new developments. Academic Press, New York

    Google Scholar 

  2. Liira J, Verbeek JH, Costa G, Driscoll TR, Sallinen M, Isotalo LK, Ruotsalainen JH (2014) Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. Cochrane Database Syst Rev 2014(8):CD009776

    Google Scholar 

  3. Florea AM, Busselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3(1):1351–1371

    Article  CAS  Google Scholar 

  4. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007

    Article  CAS  PubMed  Google Scholar 

  5. Townsend DM, Hanigan MH (2002) Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300(1):142–148

    Article  CAS  PubMed  Google Scholar 

  6. Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH (2003) Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 14(1):1–10

    Article  CAS  PubMed  Google Scholar 

  7. Cozzaglio L, Doci R, Colella G, Zunino F, Casciarri G, Gennari L (1990) A feasibility study of high-dose cisplatin and 5-fluorouracil with glutathione protection in the treatment of advanced colorectal cancer. Tumori 76(6):590–594

    CAS  PubMed  Google Scholar 

  8. Zunino F, Pratesi G, Micheloni A, Cavalletti E, Sala F, Tofanetti O (1989) Protective effect of reduced glutathione against cisplatin-induced renal and systemic toxicity and its influence on the therapeutic activity of the antitumor drug. Chem Biol Interact 70(1–2):89–101

    Article  CAS  PubMed  Google Scholar 

  9. Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M (1996) Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy 16(1):16–39

    CAS  PubMed  Google Scholar 

  10. Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89(7):3070–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanigan MH, Gallagher BC, Townsend DM, Gabarra V (1999) Gamma-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis 20(4):553–559

    Article  CAS  PubMed  Google Scholar 

  12. Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14(7):2101–2112

    Article  CAS  PubMed  Google Scholar 

  13. Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22(5):441–445

    Article  CAS  PubMed  Google Scholar 

  14. Ekborn A, Hansson J, Ehrsson H, Eksborg S, Wallin I, Wagenius G, Laurell G (2004) High-dose Cisplatin with amifostine: ototoxicity and pharmacokinetics. Laryngoscope 114(9):1660–1667

    Article  CAS  PubMed  Google Scholar 

  15. Esposito M, Viale M, Vannozzi MO, Zicca A, Cadoni A, Merlo F, Gogioso L (1996) Effect of the antiarrhythmic drug procainamide on the toxicity and antitumor activity of cis-diamminedichloroplatinum(II). Toxicol Appl Pharmacol 140(2):370–377

    Article  CAS  PubMed  Google Scholar 

  16. Viale M, Vannozzi MO, Pastrone I, Mariggio MA, Zicca A, Cadoni A, Cafaggi S, Tolino G, Lunardi G, Civalleri D et al (2000) Reduction of cisplatin nephrotoxicity by procainamide: does the formation of a cisplatin-procainamide complex play a role? J Pharmacol Exp Ther 293(3):829–836

    CAS  PubMed  Google Scholar 

  17. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2(11):2490–2518

    Article  CAS  Google Scholar 

  18. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320

    Article  CAS  PubMed  Google Scholar 

  19. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99(9):2467–2498

    Article  CAS  PubMed  Google Scholar 

  20. Cullen KJ, Yang Z, Schumaker L, Guo Z (2007) Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr 39(1):43–50

    Article  CAS  PubMed  Google Scholar 

  21. Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278(11):9100–9106

    Article  CAS  PubMed  Google Scholar 

  22. Hirama M, Isonishi S, Yasuda M, Ishikawa H (2006) Characterization of mitochondria in cisplatin-resistant human ovarian carcinoma cells. Oncol Rep 16(5):997–1002

    CAS  PubMed  Google Scholar 

  23. Isnard-Bagnis C, Moulin B, Launay-Vacher V, Izzedine H, Tostivint I, Deray G (2005) [Anticancer drug-induced nephrotoxicity]. Nephrol Ther 1(2):101–114

    Article  PubMed  Google Scholar 

  24. Portilla D, Dai G, McClure T, Bates L, Kurten R, Megyesi J, Price P, Li S (2002) Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 62(4):1208–1218

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Wu P, Yarlagadda P, Vadjunec NM, Proia AD, Harris RA, Portilla D (2004) PPAR alpha ligand protects during cisplatin-induced acute renal failure by preventing inhibition of renal FAO and PDC activity. Am J Physiol Renal Physiol 286(3):F572-580.

  26. Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, Inoue M (2005) Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol 289(6):C1466–C1475

    Article  CAS  PubMed  Google Scholar 

  27. Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74(5):631–640

    Article  CAS  PubMed  Google Scholar 

  28. Fraser M, Bai T, Tsang BK (2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 122(3):534–546

    Article  CAS  PubMed  Google Scholar 

  29. Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61(3):223–242

    Article  CAS  PubMed  Google Scholar 

  30. Ramesh G, Reeves WB (2005) p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289(1):F166–174

    Article  CAS  PubMed  Google Scholar 

  31. Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T, Smith SB, Dong Z (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 73(9):1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH, Cleton FJ, Osanto S (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40(11):1713–1723

    Article  CAS  PubMed  Google Scholar 

  33. Solanki MH, Chatterjee PK, Xue X, Gupta M, Rosales I, Yeboah MM, Kohn N, Metz CN: Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice. Am J Physiol Renal Physiol 2015, 309(1):F35–47

    Article  CAS  PubMed  Google Scholar 

  34. Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J (2010) The role of Toll-like receptors in renal diseases. Nat Rev Nephrol 6(4):224–235

    Article  CAS  PubMed  Google Scholar 

  35. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19(5):923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tadagavadi RK, Reeves WB (2010) Endogenous IL-10 attenuates cisplatin nephrotoxicity: role of dendritic cells. J Immunol 185(8):4904–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramesh G, Reeves WB (2004) Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int 65(2):490–499

    Article  CAS  PubMed  Google Scholar 

  39. Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY, Jang KY, Sung MJ, Park SK, Kim W (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 24(10):3012–3020

    Article  CAS  PubMed  Google Scholar 

  40. Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Investig 110(6):835–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99(22):14298–14302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pabla N, Murphy RF, Liu K, Dong Z (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 296(3):F505–511

  43. Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535

    Article  CAS  PubMed  Google Scholar 

  44. Ishida S, McCormick F, Smith-McCune K, Hanahan D (2010) Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17(6):574–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW (1984) Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res 44(8):3632–3635

    CAS  PubMed  Google Scholar 

  46. Klein J, Bentur Y, Cheung D, Moselhy G, Koren G (1991) Renal handling of cisplatin: interactions with organic anions and cations in the dog. Clin Investig Med 14(5):388–394

    CAS  Google Scholar 

  47. Jacobs C, Kaubisch S, Halsey J, Lum BL, Gosland M, Coleman CN, Sikic BI (1991) The use of probenecid as a chemoprotector against cisplatin nephrotoxicity. Cancer 67(6):1518–1524

    Article  CAS  PubMed  Google Scholar 

  48. Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243–266

    Article  CAS  PubMed  Google Scholar 

  49. Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90

    Article  CAS  PubMed  Google Scholar 

  50. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86(4):396–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH et al (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176(3):1169–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167(6):1477–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yonezawa A, Inui K (2011) Organic cation transporter OCT/SLC22A and H(+)/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 81(5):563–568

    Article  CAS  PubMed  Google Scholar 

  54. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13(7):1703–1710

    Article  CAS  PubMed  Google Scholar 

  55. Sleijfer DT, Offerman JJ, Mulder NH, Verweij M, van der Hem GK, Schraffordt Koops HS, Meijer S (1987) The protective potential of the combination of verapamil and cimetidine on cisplatin-induced nephrotoxicity in man. Cancer 60(11):2823–2828

    Article  CAS  PubMed  Google Scholar 

  56. Goldstein RS, Mayor GH (1983) Minireview. The nephrotoxicity of cisplatin. Life Sci 32(7):685–690

    Article  CAS  PubMed  Google Scholar 

  57. Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83(6):866–869

    Article  CAS  PubMed  Google Scholar 

  58. Madias NE, Harrington JT (1978) Platinum nephrotoxicity. Am J Med 65(2):307–314

    Article  CAS  PubMed  Google Scholar 

  59. Maxwell MH, Kleeman CR, Narins RG (1994) Maxwell & Kleeman’s clinical disorders of fluid and electrolyte metabolism, 5th edn. McGraw-Hill, Health Professions Division, New York

    Google Scholar 

  60. Schilsky RL, Anderson T (1979) Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Ann Intern Med 90(6):929–931

    Article  CAS  PubMed  Google Scholar 

  61. Sutton RA, Walker VR, Halabe A, Swenerton K, Coppin CM (1991) Chronic hypomagnesemia caused by cisplatin: effect of calcitriol. J Lab Clin Med 117(1):40–43

    CAS  PubMed  Google Scholar 

  62. Goldstein RS, Mayor GH, Rosenbaum RW, Hook JB, Santiago JV, Bond JT (1982) Glucose intolerance following cis-platinum treatment in rats. Toxicology 24(3–4):273–280

    Article  CAS  PubMed  Google Scholar 

  63. Kim YK, Byun HS, Kim YH, Woo JS, Lee SH (1995) Effect of cisplatin on renal function in rabbits: mechanism of reduced glucose reabsorption. Toxicol Appl Pharmacol 130(1):19–26

    Article  CAS  PubMed  Google Scholar 

  64. Wangila GW, Nagothu KK, Steward R, 3rd, Bhatt R, Iyere PA, Willingham WM, Sorenson JR, Shah SV, Portilla D (2006) Prevention of cisplatin-induced kidney epithelial cell apoptosis with a Cu superoxide dismutase-mimetic [copper2II(3,5-ditertiarybutylsalicylate)4(ethanol)4]. Toxicol In Vitro 20(8):1300–1312

    Article  CAS  PubMed  Google Scholar 

  65. Swainson CP, Colls BM, Fitzharris BM (1985) Cis-platinum and distal renal tubule toxicity. NZ Med J 98(779):375–378

    CAS  Google Scholar 

  66. Safirstein R, Miller P, Dikman S, Lyman N, Shapiro C (1981) Cisplatin nephrotoxicity in rats: defect in papillary hypertonicity. Am J Physiol 241(2):F175–185

    CAS  PubMed  Google Scholar 

  67. Seguro AC, Shimizu MH, Kudo LH, dos Santos Rocha A (1989) Renal concentration defect induced by cisplatin. The role of thick ascending limb and papillary collecting duct. Am J Nephrol 9(1):59–65

    Article  CAS  PubMed  Google Scholar 

  68. Jackson AM, Rose BD, Graff LG, Jacobs JB, Schwartz JH, Strauss GM, Yang JP, Rudnick MR, Elfenbein IB, Narins RG (1984) Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann Intern Med 101(1):41–44

    Article  CAS  PubMed  Google Scholar 

  69. Lam M, Adelstein DJ (1986) Hypomagnesemia and renal magnesium wasting in patients treated with cisplatin. Am J Kidney Dis 8(3):164–169

    Article  CAS  PubMed  Google Scholar 

  70. Lajer H, Kristensen M, Hansen HH, Nielsen S, Frokiaer J, Ostergaard LF, Christensen S, Daugaard G, Jonassen TE (2005) Magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56(5):535–542

    Article  CAS  PubMed  Google Scholar 

  71. Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, Safirstein RL, Beger RD (2006) Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int 69(12):2194–2204

    Article  CAS  PubMed  Google Scholar 

  72. Kim SW, Lee JU, Nah MY, Kang DG, Ahn KY, Lee HS, Choi KC (2001) Cisplatin decreases the abundance of aquaporin water channels in rat kidney. J Am Soc Nephrol 12(5):875–882

    CAS  PubMed  Google Scholar 

  73. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    Article  PubMed  Google Scholar 

  74. Goldstein RS, Mayor GH, Gingerich RL, Hook JB, Rosenbaum RW, Bond JT (1983) The effects of cisplatin and other divalent platinum compounds on glucose metabolism and pancreatic endocrine function. Toxicol Appl Pharmacol 69(3):432–441

    Article  CAS  PubMed  Google Scholar 

  75. Stewart DJ, Dulberg CS, Mikhael NZ, Redmond MD, Montpetit VA, Goel R (1997) Association of cisplatin nephrotoxicity with patient characteristics and cisplatin administration methods. Cancer Chemother Pharmacol 40(4):293–308

    Article  CAS  PubMed  Google Scholar 

  76. Reece PA, Stafford I, Russell J, Khan M, Gill PG (1987) Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: relationship between peak ultrafilterable platinum plasma levels and nephrotoxicity. J Clin Oncol 5(2):304–309

    Article  CAS  PubMed  Google Scholar 

  77. Skinner R, Pearson AD, English MW, Price L, Wyllie RA, Coulthard MG, Craft AW (1998) Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer 77(10):1677–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Caglar K, Kinalp C, Arpaci F, Turan M, Saglam K, Ozturk B, Komurcu S, Yavuz I, Yenicesu M, Ozet A et al (2002) Cumulative prior dose of cisplatin as a cause of the nephrotoxicity of high-dose chemotherapy followed by autologous stem-cell transplantation. Nephrol Dial Transplant 17(11):1931–1935

    Article  CAS  PubMed  Google Scholar 

  79. Tanaka H, Ishikawa E, Teshima S, Shimizu E (1986) Histopathological study of human cisplatin nephropathy. Toxicol Pathol 14(2):247–257

    Article  CAS  PubMed  Google Scholar 

  80. Vickers AE, Rose K, Fisher R, Saulnier M, Sahota P, Bentley P (2004) Kidney slices of human and rat to characterize cisplatin-induced injury on cellular pathways and morphology. Toxicol Pathol 32(5):577–590

    Article  CAS  PubMed  Google Scholar 

  81. Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50(2):147–158

    Article  CAS  PubMed  Google Scholar 

  82. Dekkers IA, Blijdorp K, Cransberg K, Pluijm SM, Pieters R, Neggers SJ, van den Heuvel-Eibrink MM (2013) Long-term nephrotoxicity in adult survivors of childhood cancer. Clin J Am Soc Nephrol CJASN 8(6):922–929

    Article  CAS  PubMed  Google Scholar 

  83. Knijnenburg SL, Mulder RL, Schouten-Van Meeteren AY, Bokenkamp A, Blufpand H, van Dulmen-den Broeder E, Veening MA, Kremer LC, Jaspers MW: Early and late renal adverse effects after potentially nephrotoxic treatment for childhood cancer. Cochrane Database Syst Rev 2013(10):CD008944

  84. Li S, Gokden N, Okusa MD, Bhatt R, Portilla D: Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 2005, 289(2):F469–480

    Article  CAS  PubMed  Google Scholar 

  85. Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li S et al (2001) Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 60(6):2118–2128

    Article  CAS  PubMed  Google Scholar 

  86. Rani N, Bharti S, Tomar A, Dinda AK, Arya DS, Bhatia J (2016) Inhibition of PARP activation by enalapril is crucial for its renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free Radic Res 50(11):1226–1236

    Article  CAS  PubMed  Google Scholar 

  87. Price PM, Safirstein RL, Megyesi J: Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. Am J Physiol Renal Physiol 2004, 286(2):F378–384

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Leung.

Ethics declarations

Funding

None.

Conflict of interest

We do not have any financial or non-financial potential conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohar, S., Leung, N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31, 15–25 (2018). https://doi.org/10.1007/s40620-017-0392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-017-0392-z

Keywords

Navigation