Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The TSH upper reference limit: where are we at?

Abstract

The diagnosis of subclinical hypothyroidism—serum TSH levels above and T4 levels within the laboratory reference ranges—depends critically on the upper limit of the TSH reference interval. Calls have been made to lower the current upper TSH reference limit of 4.0 mU/l to 2.5 mU/l to exclude patients with occult hypothyroidism. However, data from population studies do not indicate that the distribution of TSH is altered owing to inclusion of such individuals. The opposite suggestion has also been put forward; the TSH upper reference limit is often too low, especially in the elderly, in women and in white individuals, which may lead to unnecessary or even harmful therapy. Studies in elderly individuals have shown that although aging may be associated with increased TSH levels, paradoxically, overt hypothyroidism in this population may be associated with a less robust TSH response than in young individuals. This Review highlights the interindividual and intraindividual variability of TSH levels and discusses the current controversy that surrounds the appropriateness of reference ranges defined on the basis of age, race, sex and amount of iodine intake. Moreover, the current evidence on lowering or increasing the upper limit of the TSH reference interval is reviewed and the need to individualize levothyroxine treatment in patients with elevated TSH levels is discussed.

Key Points

  • Current evidence does not support a change of the upper TSH reference limit; an exception is pregnancy, where trimester-specific reference intervals for thyroid function tests should be used

  • No evidence suggests that serum TSH, as an indicator of thyroid health, should be evaluated differently depending on race, sex or iodine intake

  • Thyroid autoimmunity is very common (50%) in elderly white women, with a high frequency of elevated TSH levels, especially if iodine intake is high

  • Asymptomatic elderly individuals with a serum TSH level <7–10 mU/l probably do not benefit from levothyroxine therapy; however, treatment should be considered in young women with elevated TSH levels who plan a pregnancy

  • TSH is a less sensitive marker of thyroid insufficiency in old individuals, and care should be taken not to overlook clinical hypothyroidism when TSH concentration is elevated

  • In patients with subclinical hypothyroidism, a change in serum TSH level >40% is unlikely to be caused by random variation

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of serum TSH in two independent Danish population cohorts of young women investigated before and after the Danish iodization of salt in the year 2000.
Figure 2: Age-specific TSH values (log-scaled) at diagnosis in 578 patients with spontaneous (autoimmune) hypothyroidism.

Similar content being viewed by others

Layal Chaker, Salman Razvi, … Robin P. Peeters

References

  1. Carlé, A. et al. Epidemiology of subtypes of hypothyroidism in Denmark. Eur. J. Endocrinol. 154, 21–28 (2006).

    PubMed  Google Scholar 

  2. Carlé, A. et al. Epidemiology of subtypes of hyperthyroidism in Denmark—a population-based study [abstract OP47]. 34th Annual Meeting of the European Thyroid Association [online], (2009).

    Google Scholar 

  3. Andersen, S. et al. More hypothyroidism and less hyperthyroidism with sufficient iodine nutrition compared to mild iodine deficiency—a comparative population-based study of older people. Maturitas 64, 126–131 (2009).

    CAS  PubMed  Google Scholar 

  4. Biondi, B. & Cooper, D. S. The clinical significance of subclinical thyroid dysfunction. Endocr. Rev. 29, 76–131 (2008).

    CAS  PubMed  Google Scholar 

  5. Jones, D. D., May, K. E. & Geraci, S. A. Subclinical thyroid disease. Am. J. Med. 123, 502–504 (2010).

    PubMed  Google Scholar 

  6. Fatourechi, V. Subclinical hypothyroidism: an update for primary care physicians. Mayo Clin. Proc. 84, 65–71 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Mitchell, A. L. & Pearce, S. H. How should we treat patients with low serum thyrotropin concentrations? Clin. Endocrinol. (Oxf.) 72, 292–296 (2010).

    CAS  Google Scholar 

  8. Goichot, B., Sapin, R. & Schlienger, J. L. Subclinical hyperthyroidism: considerations in defining the lower limit of the thyrotropin reference interval. Clin. Chem. 55, 420–424 (2009).

    CAS  PubMed  Google Scholar 

  9. Karmisholt, J., Andersen, S. & Laurberg, P. Analytical goals for thyroid function tests when monitoring patients with untreated subclinical hypothyroidism. Scand. J. Clin. Lab. Invest. 70, 264–268 (2010).

    CAS  PubMed  Google Scholar 

  10. Parle, J. V., Franklyn, J. A., Cross, K. W., Jones, S. C. & Sheppard, M. C. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin. Endocrinol. (Oxf.) 34, 77–83 (1991).

    CAS  Google Scholar 

  11. Díez, J. J. & Iglesias, P. Spontaneous subclinical hypothyroidism in patients older than 55 years: an analysis of natural course and risk factors for the development of overt thyroid failure. J. Clin. Endocrinol. Metab. 89, 4890–4897 (2004).

    PubMed  Google Scholar 

  12. Karmisholt, J. & Laurberg, P. Serum TSH and serum thyroid peroxidase antibody fluctuate in parallel and high urinary iodine excretion predicts subsequent thyroid failure in a 1-year study of patients with untreated subclinical hypothyroidism. Eur. J. Endocrinol. 158, 209–215 (2008).

    CAS  PubMed  Google Scholar 

  13. Baloch, Z. et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 13, 3–126 (2003).

    PubMed  Google Scholar 

  14. Spencer, C. A., Hollowell, J. G., Kazarosyan, M. & Braverman, L. E. National Health and Nutrition Examination Survey III thyroid-stimulating hormone (TSH)-thyroperoxidase antibody relationships demonstrate that TSH upper reference limits may be skewed by occult thyroid dysfunction. J. Clin. Endocrinol. Metab. 92, 4236–4240 (2007).

    CAS  PubMed  Google Scholar 

  15. Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).

    CAS  PubMed  Google Scholar 

  16. Surks, M. I. & Boucai, L. Age- and race-based serum thyrotropin reference limits. J. Clin. Endocrinol. Metab. 95, 496–502 (2010).

    CAS  PubMed  Google Scholar 

  17. Hollowell, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

    CAS  PubMed  Google Scholar 

  18. Szkudlinski, M. W., Fremont, V., Ronin, C. & Weintraub, B. D. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiolog. Rev. 82, 473–502 (2002).

    CAS  Google Scholar 

  19. Beck-Peccoz, P., Amr, S., Menezes-Ferreira, M. M., Faglia, G. & Weintraub, B. D. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin-releasing hormone. N. Eng. J. Med. 312, 1085–1090 (1985).

    CAS  Google Scholar 

  20. Rawlins, M. L. & Roberts, W. L. Performance characteristics of six third-generation assays for thyroid-stimulating hormone. Clin. Chem. 50, 2338–2344 (2004).

    CAS  PubMed  Google Scholar 

  21. Weeke, J. & Gundersen, H. J. Circadian and 30 minutes variations in serum TSH and thyroid hormones in normal subjects. Acta Endocrinol. (Copenh.) 89, 659–672 (1978).

    CAS  Google Scholar 

  22. Brabant, G. et al. Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J. Clin. Endocrinol. Metab. 70, 403–409 (1990).

    CAS  PubMed  Google Scholar 

  23. Brabant, G. et al. Early adaptation of thyrotropin and thyroglobulin secretion to experimentally decreased iodine supply in man. Metabolism 41, 1093–1096 (1992).

    CAS  PubMed  Google Scholar 

  24. Glinoer, D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocr. Rev. 18, 404–433 (1997).

    CAS  PubMed  Google Scholar 

  25. Glinoer, D. & Spencer, C. A. Serum TSH determinations in pregnancy: how, when and why? Nat. Rev. Endocrinol. 6, 526–529 (2010).

    CAS  PubMed  Google Scholar 

  26. Hershman, J. M. The role of human chorionic gonadotropin as a thyroid stimulator in normal pregnancy. J. Clin. Endocrinol. Metab. 93, 3305–3306 (2008).

    CAS  PubMed  Google Scholar 

  27. Glinoer, D. The importance of iodine nutrition during pregnancy. Public Health Nutr. 10, 1542–1546 (2007).

    PubMed  Google Scholar 

  28. Soldin, O. P. et al. Trimester-specific changes in maternal thyroid hormone, thyrotropin, and thyroglobulin concentrations during gestation: trends and associations across trimesters in iodine sufficiency. Thyroid 14, 1084–1090 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Warner, M. H. & Beckett, G. J. Mechanisms behind the non-thyroidal illness syndrome: an update. J. Endocrinol. 205, 1–13 (2010).

    CAS  Google Scholar 

  30. Adler, S. M. & Wartofsky, L. The nonthyroidal illness syndrome. Endocrinol. Metab. Clin. North Am. 36, 657–672 (2007).

    CAS  PubMed  Google Scholar 

  31. Boelen, A., Wiersinga, W. M. & Fliers, E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 18, 123–129 (2008).

    CAS  PubMed  Google Scholar 

  32. Reinehr, T. Obesity and thyroid function. Mol. Cell. Endocrinol. 316, 165–171 (2010).

    CAS  PubMed  Google Scholar 

  33. Andersen, S., Pedersen, K. M., Bruun, N. H. & Laurberg, P. Narrow individual variations in serum T4 and T3 in normal subjects: a clue to the understanding of subclinical thyroid disease. J. Clin. Endocrinol. Metab. 87, 1068–1072 (2002).

    CAS  PubMed  Google Scholar 

  34. Hansen, P. S. et al. Genetic and environmental interrelations between measurements of thyroid function in a healthy Danish twin population. Am. J. Physiol. Endocrinol. Metab. 292, E765–E770 (2007).

    CAS  PubMed  Google Scholar 

  35. Dayan, C. M. & Panicker, V. Novel insights into thyroid hormones from the study of common genetic variation. Nat. Rev. Endocrinol. 5, 211–218 (2009).

    CAS  PubMed  Google Scholar 

  36. Harris, E. K. Effects of intra- and interindividual variation on the appropriate use of normal ranges. Clin. Chem. 20, 1535–1542 (1974).

    CAS  PubMed  Google Scholar 

  37. Eisenberg, M. & Distefano, J. J. TSH-based protocol, tablet instability, and absorption effects on L-T4 bioequivalence. Thyroid 19, 103–110 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vanderpump, M. P. et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. (Oxf.) 43, 55–68 (1995).

    CAS  Google Scholar 

  39. Guan, H. et al. Influence of iodine on the reference interval of TSH and the optimal interval of TSH: results of a follow-up study in areas with different iodine intakes. Clin. Endocrinol. (Oxf.) 69, 136–141 (2008).

    CAS  Google Scholar 

  40. Walsh, J. P. et al. Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year longitudinal study of a community-based cohort using current immunoassay techniques. J. Clin. Endocrinol. Metab. 95, 1095–1104 (2010).

    CAS  PubMed  Google Scholar 

  41. Stuckey, B. G., Kent, G. N., Ward, L. C., Brown, S. J. & Walsh, J. P. Postpartum thyroid dysfunction and the long-term risk of hypothyroidism: results from a 12-year follow-up study of women with and without postpartum thyroid dysfunction. Clin. Endocrinol. (Oxf.) 73, 389–395 (2010).

    CAS  Google Scholar 

  42. Vejbjerg, P. et al. The association between hypoechogenicity or irregular echo pattern at thyroid ultrasonography and thyroid function in the general population. Eur. J. Endocrinol. 155, 547–552 (2006).

    CAS  PubMed  Google Scholar 

  43. Spencer, C. A. Contemporary issues in thyroid disease measurements. American Association for Clinical Chemistry [online], (2010).

    Google Scholar 

  44. Wartofsky, L. & Dickey, R. A. The evidence for a narrower thyrotropin reference range is compelling. J. Clin. Endocrinol. Metab. 90, 5483–5488 (2005).

    CAS  PubMed  Google Scholar 

  45. Dickey, R. A., Wartofsky, L. & Feld, S. Optimal thyrotropin level: normal ranges and reference intervals are not equivalent. Thyroid 15, 1035–1039 (2005).

    CAS  PubMed  Google Scholar 

  46. Surks, M. I., Goswami, G. & Daniels, G. H. The thyrotropin reference range should remain unchanged. J. Clin. Endocrinol. Metab. 90, 5489–5496 (2005).

    CAS  PubMed  Google Scholar 

  47. Surks, M. I. et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 291, 228–238 (2004).

    CAS  PubMed  Google Scholar 

  48. Gharib, H. et al. Subclinical thyroid dysfunction: a joint statement on management from the American Association of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society. J. Clin. Endocrinol. Metab. 90, 581–585 (2005).

    CAS  PubMed  Google Scholar 

  49. Meyerovitch, J. et al. Serum thyrotropin measurements in the community: five-year follow-up in a large network of primary care physicians. Arch. Intern. Med. 167, 1533–1538 (2007).

    CAS  PubMed  Google Scholar 

  50. Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).

    CAS  PubMed  Google Scholar 

  51. Boucai, L. & Surks, M. I. Reference limits of serum TSH and free T4 are significantly influenced by race and age in an urban outpatient medical practice. Clin. Endocrinol. (Oxf.) 70, 788–793 (2009).

    Google Scholar 

  52. Atzmon, G., Barzilai, N., Hollowell, J. G., Surks, M. I. & Gabriely, I. Extreme longevity is associated with increased serum thyrotropin. J. Clin. Endocrinol. Metab. 94, 1251–1254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Atzmon, G., Barzilai, N., Surks, M. I. & Gabriely, I. Genetic predisposition to elevated serum thyrotropin is associated with exceptional longevity. J. Clin. Endocrinol. Metab. 94, 4768–4775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rozing, M. P. et al. Familial longevity is associated with decreased thyroid function. J. Clin. Endocrinol. Metab. 95, 4979–4984 (2010).

    CAS  PubMed  Google Scholar 

  55. Gussekloo, J. et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA 292, 2591–2599 (2004).

    CAS  PubMed  Google Scholar 

  56. Sathyapalan, T., Manuchehri, A. M., Rigby, A. S. & Atkin, S. L. Subclinical hypothyroidism is associated with reduced all-cause mortality in patients with type 2 diabetes. Diabetes Care 33, e37 (2010).

    PubMed  Google Scholar 

  57. Utiger, R. D. Radioimmunoassay of human plasma thyrotropin. J. Clin. Invest. 44, 1277–1286 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Laurberg, P. et al. The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur. J. Endocrinol. 155, 219–228 (2006).

    CAS  PubMed  Google Scholar 

  59. Vejbjerg, P. et al. Lower prevalence of mild hyperthyroidism related to a higher iodine intake in the population: prospective study of a mandatory iodization programme. Clin. Endocrinol. (Oxf.) 71, 440–445 (2009).

    CAS  Google Scholar 

  60. Hamilton, T. E., Davis, S., Onstad, L. & Kopecky, K. J. Thyrotropin levels in a population with no clinical, autoantibody, or ultrasonographic evidence of thyroid disease: implications for the diagnosis of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 93, 1224–1230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Laurberg, P. et al. Iodine intake as a determinant of thyroid disorders in populations. Best Pract. Res. Clin. Endocrinol. Metab. 24, 13–27 (2010).

    CAS  PubMed  Google Scholar 

  62. Duarte, G. C. et al. Excessive iodine intake and ultrasonographic thyroid abnormalities in schoolchildren. J. Pediatr. Endocrinol. Metab. 22, 327–334 (2009).

    CAS  PubMed  Google Scholar 

  63. de Benoist, B., McLean, E., Andersson, M. & Rogers, L. Iodine deficiency in 2007: global progress since 2003. Food Nutr. Bull. 29, 195–202 (2008).

    PubMed  Google Scholar 

  64. Sichieri, R. et al. Low prevalence of hypothyroidism among black and Mulatto people in a population-based study of Brazilian women. Clin. Endocrinol. (Oxf.) 66, 803–807 (2007).

    Google Scholar 

  65. Rasmussen, L. B. et al. Iodine intake before and after mandatory iodization in Denmark: results from the Danish Investigation of Iodine Intake and Thyroid Diseases (DanThyr) study. Br. J. Nutr. 100, 166–173 (2008).

    CAS  PubMed  Google Scholar 

  66. Rodondi, N. et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304, 1365–1374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Goichot, B., Sapin, R. & Schlienger, J. L. Subclinical hyperthyroidism: considerations in defining the lower limit of the thyrotropin reference interval. Clin. Chem. 55, 420–424 (2009).

    CAS  PubMed  Google Scholar 

  68. Villar, H. C., Saconato, H., Valente, O. & Atallah, A. N. Thyroid hormone replacement for subclinical hypothyroidism. Cochrane Database Syst. Rev. 18, CD003419 (2007).

    Google Scholar 

  69. Razvi, S., Shakoor, A., Vanderpump, M., Weaver, J. U. & Pearce, S. H. The influence of age on the relationship between subclinical hypothyroidism and ischemic heart disease: a metaanalysis. J. Clin. Endocrinol. Metab. 93, 2998–3007 (2008).

    CAS  PubMed  Google Scholar 

  70. Cappola, A. R. et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA 295, 1033–1041 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Eskelinen, S. I. et al. Associations of thyroid-stimulating hormone and free thyroxine concentrations with health and life satisfaction in elderly adults. Endocr. Pract. 13, 451–457 (2007).

    PubMed  Google Scholar 

  72. Bell, R. J. et al. Well-being, health-related quality of life and cardiovascular disease risk profile in women with subclinical thyroid disease—a community-based study. Clin. Endocrinol. (Oxf.) 66, 548–556 (2007).

    Google Scholar 

  73. Singh, S. et al. Impact of subclinical thyroid disorders on coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis. Int. J. Cardiol. 125, 41–48 (2008).

    PubMed  Google Scholar 

  74. Ochs, N. et al. Meta-analysis: subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann. Intern. Med. 148, 832–845 (2008).

    PubMed  Google Scholar 

  75. Simonsick, E. M. et al. Subclinical hypothyroidism and functional mobility in older adults. Arch. Intern. Med. 169, 2011–2017 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Haentjens, P., Van Meerhaeghe, A., Poppe, K. & Velkeniers, B. Subclinical thyroid dysfunction and mortality: an estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort studies. Eur. J. Endocrinol. 159, 329–341 (2008).

    CAS  PubMed  Google Scholar 

  77. Razvi, S., Weaver, J. U., Vanderpump, M. P. & Pearce, S. H. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort. J. Clin. Endocrinol. Metab. 95, 1734–1740 (2010).

    CAS  PubMed  Google Scholar 

  78. Völzke, H. et al. Reference levels for serum thyroid function tests of diagnostic and prognostic significance. Horm. Metab. Res. 42, 809–814 (2010).

    PubMed  Google Scholar 

  79. Laurberg, P., Andersen, S., Bülow Pedersen, I. & Carlé, A. Hypothyroidism in the elderly: pathophysiology, diagnosis and treatment. Drugs Aging 22, 23–38 (2005).

    CAS  PubMed  Google Scholar 

  80. Vanderpump, M. P. How should we manage patients with mildly increased serum thyrotrophin concentrations? Clin. Endocrinol. (Oxf.) 72, 436–440 (2010).

    CAS  Google Scholar 

  81. Razvi, S., Weaver, J. U. & Pearce, S. H. Subclinical thyroid disorders: significance and clinical impact. J. Clin. Pathol. 63, 379–386 (2010).

    CAS  PubMed  Google Scholar 

  82. Cooper, D. S. & Ridgway, E. C. Thoughts on prevention of thyroid disease in the United States. Thyroid 12, 925–929 (2002).

    Google Scholar 

  83. Somwaru, L. L., Arnold, A. M., Joshi, N., Fried, L. P. & Cappola, A. R. High frequency of and factors associated with thyroid hormone over-replacement and under-replacement in men and women aged 65 and over. J. Clin. Endocrinol. Metab. 94, 1342–1345 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hannemann, A. et al. Thyroid function tests in patients taking thyroid medication in Germany: Results from the population-based Study of Health in Pomerania (SHIP). BMC Res. Notes 3, 227 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. Reid, S. M., Middleton, P., Cossich, M. C. & Crowther, C. A. Interventions for clinical and subclinical hypothyroidism in pregnancy. Cochrane Database Syst. Rev. 7, CD007752 (2010).

    Google Scholar 

  86. Kuppens, S. M. et al. Maternal thyroid function during gestation is related to breech presentation at term. Clin. Endocrinol. (Oxf.) 72, 820–824 (2010).

    CAS  Google Scholar 

  87. Negro, R. et al. Increased pregnancy loss rate in thyroid antibody negative women with TSH levels between 2.5 and 5.0 in the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 95, E44–E48 (2010).

    PubMed  Google Scholar 

  88. Cole, L. A. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod. Biol. Endocrinol. 7, 8 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Carlé, A. et al. Age modifies the pituitary TSH response to thyroid failure. Thyroid 17, 139–144 (2007).

    PubMed  Google Scholar 

  90. Wiener, R., Utiger, R. D., Lew, R. & Emerson, C. H. Age, sex, and serum thyrotropin concentrations in primary hypothyroidism. Acta Endocrinol. (Copenh.) 124, 364–369 (1991).

    CAS  Google Scholar 

  91. Over, R., Mannan, S., Nsouli-Maktabi, H., Burman, K. D. & Jonklaas, J. Age and the thyrotropin response to hypothyroxinemia. J. Clin. Endocrinol. Metab. 95, 3675–3683 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Karmisholt, J., Andersen, S. & Laurberg, P. Interval between tests and thyroxine estimation method influence outcome of monitoring of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 93, 1634–1640 (2008).

    CAS  PubMed  Google Scholar 

  93. Rosário, P. W., Bessa, B., Valadão, M. M. & Purisch, S. Natural history of mild subclinical hypothyroidism: prognostic value of ultrasound. Thyroid 19, 9–12 (2009).

    PubMed  Google Scholar 

  94. Nyström, E. et al. Thyroid disease and high concentration of serum thyrotrophin in a population sample of women. A 4-year follow-up. Acta Med. Scand. 210, 39–46 (1981).

    PubMed  Google Scholar 

  95. Tunbridge, W. M. et al. Natural history of autoimmune thyroiditis. Br. Med. J. (Clin. Res. Ed.) 282, 258–262 (1981).

    CAS  Google Scholar 

  96. Gray, R. S., Borsey, D. Q., Irvine, W. J., Seth, J. & Clarke, B. F. Natural history of thyroid function in diabetics with impaired thyroid reserve: a four year controlled study. Clin. Endocrinol. (Oxf.) 19, 445–451 (1983).

    CAS  Google Scholar 

  97. Rosenthal, M. J., Hunt, W. C., Garry, P. J. & Goodwin, J. S. Thyroid failure in the elderly. Microsomal antibodies as discriminant for therapy. JAMA 258, 209–213 (1987).

    CAS  PubMed  Google Scholar 

  98. Kabadi, U. M. 'Subclinical hypothyroidism'. Natural course of the syndrome during a prolonged follow-up study. Arch. Intern. Med. 153, 957–961 (1993).

    CAS  PubMed  Google Scholar 

  99. Huber, G. et al. Prospective study of the spontaneous course of subclinical hypothyroidism: prognostic value of thyrotropin, thyroid reserve, and thyroid antibodies. J. Clin. Endocrinol. Metab. 87, 3221–3226 (2002).

    CAS  PubMed  Google Scholar 

  100. Karmisholt, J., Andersen, S. & Laurberg, P. Variation in thyroid function tests in patients with stable untreated subclinical hypothyroidism. Thyroid 18, 303–308 (2008).

    PubMed  Google Scholar 

  101. Brabant, G. et al. Is there a need to redefine the upper normal limit of TSH? Eur. J. Endocrinol. 154, 633–637 (2006).

    CAS  PubMed  Google Scholar 

  102. Okayasu, I., Hara, Y., Nakamura, K. & Rose, N. R. Racial and age-related differences in incidence and severity of focal autoimmune thyroiditis. Am. J. Clin. Pathol. 101, 698–702 (1994).

    CAS  PubMed  Google Scholar 

  103. Okayasu, I. et al. Is focal chronic autoimmune thyroiditis an age-related disease? Differences in incidence and severity between Japanese and British. J. Pathol. 163, 257–264 (1991).

    CAS  PubMed  Google Scholar 

  104. Li, M. et al. Endemic goitre in central China caused by excessive iodine intake. Lancet 2, 257–259 (1987).

    CAS  PubMed  Google Scholar 

  105. Gärtner, R. in Comprehensive Handbook of Iodine: Nutritional, Biochemical, Pathological and Therapeutic Aspects Ch. 25 (eds Preedy, V. R., Burrow, G. N. & Watson, R. W.) 243–247 (Elsevier Academic Press, Maryland Heights, 2009).

    Google Scholar 

  106. Vagenakis, A. G. & Braverman, L. E. Adverse effects of iodides on thyroid function. Med. Clin. North Am. 59, 1075–1088 (1975).

    CAS  PubMed  Google Scholar 

  107. Li, Y. et al. Antithyroperoxidase and antithyroglobulin antibodies in a five-year follow-up survey of populations with different iodine intakes. J. Clin. Endocrinol. Metab. 93, 1751–1757 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article and provided a substantial contribution to discussions of the content. P. Laurberg wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peter Laurberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurberg, P., Andersen, S., Carlé, A. et al. The TSH upper reference limit: where are we at?. Nat Rev Endocrinol 7, 232–239 (2011). https://doi.org/10.1038/nrendo.2011.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing