Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A review of the evidence for and against increased mortality in hypothyroidism

Abstract

The lifetime risk of overt hypothyroidism is around 5%, and this disease is usually preceded by subclinical hypothyroidism, which has an even higher prevalence (estimated to be up to 9%). Hypothyroidism has been linked with cardiac dysfunction, atherosclerosis, hypertension and coagulopathy. Intuitively, this increased morbidity is expected to shorten patients' lifespan, but definitive data are lacking on whether either of these hypothyroid states (particularly overt hypothyroidism) increase mortality. Study findings are inconsistent and, overall, the pooled data do not demonstrate increased mortality in patients with either subclinical or overt hypothyroidism. However, none of the available studies was adequately designed to answer this question. This Review discusses major shortcomings in those studies, such as population dissimilarities, hypothyroid state classification and misclassification, the inclusion of nonthyroidal illness, drug interference from concurrent therapies, serious comorbidities (for example, cardiovascular disease), differences in duration of follow-up and the number of levothyroxine-treated individuals. Taken together, the data exhibit little evidence of systematic bias and no strong scientific proof of increased mortality related to either subclinical or overt hypothyroidism. Future studies, however, should take the above-mentioned shortcomings and potential genetic confounding into consideration.

Key Points

  • Hypothyroidism is associated with increased morbidity, such as hypertension and coronary heart disease

  • Published data do not unequivocally support an increased risk of mortality in individuals with either subclinical or overt hypothyroidism

  • Interpretation of the study results relating to this association is complicated by considerable variation in their methodology

  • Previous studies were not designed to determine whether subclinical or overt hypothyroidism increase mortality risk; one important confounding factor is that many patients are treated with levothyroxine

  • Future research should include adequately powered, long-term follow-up studies of cohorts with clearly defined diagnoses of thyroid diseases and account for genetic and environmental confounding variables

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: All-cause mortality in patients with hypothyroidism.

Similar content being viewed by others

Layal Chaker, Salman Razvi, … Robin P. Peeters

References

  1. Carle, A. et al. Epidemiology of subtypes of hypothyroidism in Denmark. Eur. J. Endocrinol. 154, 21–28 (2006).

    CAS  PubMed  Google Scholar 

  2. Vanderpump, M. P. et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. (Oxf.) 43, 55–68 (1995).

    CAS  Google Scholar 

  3. Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

    CAS  PubMed  Google Scholar 

  4. Brix, T. H., Kyvik, K. O. & Hegedüs, L. A population-based study of chronic autoimmune hypothyroidism in Danish twins. J. Clin. Endocrinol. Metab. 85, 536–539 (2000).

    CAS  PubMed  Google Scholar 

  5. Laurberg, P. et al. Iodine intake as a determinant of thyroid disorders in populations. Best Pract. Res. Clin. Endocrinol. Metab. 24, 13–27 (2010).

    CAS  PubMed  Google Scholar 

  6. Jensen, E. et al. Establishment of a serum thyroid stimulating hormone (TSH) reference interval in healthy adults. The importance of environmental factors, including thyroid antibodies. Clin. Chem. Lab. Med. 42, 824–832 (2004).

    CAS  PubMed  Google Scholar 

  7. Erem, C. Thyroid disorders and hypercoagulability. Semin. Thromb. Hemost. 37, 17–26 (2011).

    CAS  PubMed  Google Scholar 

  8. Pearce, E. N. Hypothyroidism and dyslipidemia: modern concepts and approaches. Curr. Cardiol. Rep. 6, 451–456 (2004).

    PubMed  Google Scholar 

  9. Goldman, M. B., Monson, R. R. & Maloof, F. Cancer mortality in women with thyroid disease. Cancer Res. 50, 2283–2289 (1990).

    CAS  PubMed  Google Scholar 

  10. Maldonado, L. S., Murata, G. H., Hershman, J. M. & Braunstein, G. D. Do thyroid function tests independently predict survival in the critically ill? Thyroid 2, 119–123 (1992).

    CAS  PubMed  Google Scholar 

  11. Imaizumi, M. et al. Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 89, 3365–3370 (2004).

    CAS  PubMed  Google Scholar 

  12. Sgarbi, J. A., Matsumura, L. K., Kasamatsu, T. S., Ferreira, S. R. & Maciel, R. M. Subclinical thyroid dysfunctions are independent risk factors for mortality in a 7.5-year follow-up: the Japanese-Brazilian thyroid study. Eur. J. Endocrinol. 162, 569–577 (2010).

    CAS  PubMed  Google Scholar 

  13. McQuade, C. et al. Hypothyroidism and moderate subclinical hypothyroidism are associated with increased all-cause mortality independent of coronary heart disease risk factors: A PreCIS database study. Thyroid 21, 837–843 (2011).

    PubMed  Google Scholar 

  14. Flynn, R. W., MacDonald, T. M., Jung, R. T., Morris, A. D. & Leese, G. P. Mortality and vascular outcomes in patients treated for thyroid dysfunction. J. Clin. Endocrinol. Metab. 91, 2159–2164 (2006).

    CAS  PubMed  Google Scholar 

  15. Nyirenda, M. J. et al. Thyroid disease and increased cardiovascular risk. Thyroid 15, 718–724 (2005).

    PubMed  Google Scholar 

  16. Boekholdt, S. M. et al. Initial thyroid status and cardiovascular risk factors: the EPIC-Norfolk prospective population study. Clin. Endocrinol. (Oxf.) 72, 404–410 (2010).

    CAS  Google Scholar 

  17. Razvi, S., Weaver, J. U., Vanderpump, M. P. & Pearce, S. H. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort. J. Clin. Endocrinol. Metab. 95, 1734–1740 (2010).

    CAS  PubMed  Google Scholar 

  18. Rodondi, N. et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med. 165, 2460–2466 (2005).

    PubMed  Google Scholar 

  19. Haentjens, P., van Meerhaeghe, A., Poppe, K. & Velkeniers, B. Subclinical thyroid dysfunction and mortality: an estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort studies. Eur. J. Endocrinol. 159, 329–341 (2008).

    CAS  PubMed  Google Scholar 

  20. Rodondi, N. et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304, 1365–1374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh, S. et al. Impact of subclinical thyroid disorders on coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis. Int. J. Cardiol. 125, 41–48 (2008).

    PubMed  Google Scholar 

  22. Ochs, N. et al. Meta-analysis: subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann. Intern. Med. 148, 832–845 (2008).

    PubMed  Google Scholar 

  23. Völzke, H., Schwahn, C., Wallaschofski, H. & Dörr, M. Review: The association of thyroid dysfunction with all-cause and circulatory mortality: is there a causal relationship? J. Clin. Endocrinol. Metab. 92, 2421–2429 (2007).

    PubMed  Google Scholar 

  24. Buffenstein, R. & Pinto, M. Endocrine function in naturally long-living small mammals. Mol. Cell Endocrinol. 299, 101–111 (2009).

    CAS  PubMed  Google Scholar 

  25. Atzmon, G., Barzilai, N., Hollowell, J. G., Surks, M. I. & Gabriely, I. Extreme longevity is associated with increased serum thyrotropin. J. Clin. Endocrinol. Metab. 94, 1251–1254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Parle, J. V., Maisonneuve, P., Sheppard, M. C., Boyle, P. & Franklyn, J. A. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet 358, 861–865 (2001).

    CAS  PubMed  Google Scholar 

  27. Gussekloo, J. et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA 292, 2591–2599 (2004).

    CAS  PubMed  Google Scholar 

  28. Walsh, J. P. et al. Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch. Intern. Med. 165, 2467–2472 (2005).

    PubMed  Google Scholar 

  29. Cappola, A. R. et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA 295, 1033–1041 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Iervasi, G. et al. Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch. Intern. Med. 167, 1526–1532 (2007).

    PubMed  Google Scholar 

  31. Asvold, B. O., Bjøro, T., Nilsen, T. I., Gunnell, D. & Vatten, L. J. Thyrotropin levels and risk of fatal coronary heart disease: the HUNT study. Arch. Intern. Med. 168, 855–860 (2008).

    PubMed  Google Scholar 

  32. Radácsi, A. et al. Mortality rate of chronically ill geriatric patients with subnormal serum thyrotropin concentration: a 2-yr follow-up study. Endocrine 21, 133–136 (2003).

    PubMed  Google Scholar 

  33. Bauer, D. C., Rodondi, N., Stone, K. L. & Hillier, T. A. Thyroid hormone use, hyperthyroidism and mortality in older women. Am. J. Med. 120, 343–349 (2007).

    CAS  PubMed  Google Scholar 

  34. Chubb, S. A., Davis, W. A., Inman, Z. & Davis, T. M. Prevalence and progression of subclinical hypothyroidism in women with type 2 diabetes: the Fremantle Diabetes Study. Clin. Endocrinol. (Oxf.) 62, 480–486 (2005).

    CAS  Google Scholar 

  35. Schultz, M. et al. Cardiovascular events in thyroid disease: a population based, prospective study. Horm. Metab Res. 43, 653–659 (2011).

    CAS  PubMed  Google Scholar 

  36. de Jongh, R. T. et al. Endogenous subclinical thyroid disorders, physical and cognitive function, depression, and mortality in older individuals. Eur. J. Endocrinol. 165, 545–554 (2011).

    CAS  PubMed  Google Scholar 

  37. Petersen, K., Bengtsson, C., Lapidus, L., Lindstedt, G. & Nystrom, E. Morbidity, mortality, and quality of life for patients treated with levothyroxine. Arch. Intern. Med. 150, 2077–2081 (1990).

    CAS  PubMed  Google Scholar 

  38. Alevizaki, M., Synetou, M., Xynos, K., Alevizaki, C. C. & Vemmos, K. N. Hypothyroidism as a protective factor in acute stroke patients. Clin. Endocrinol. (Oxf.) 65, 369–372 (2006).

    Google Scholar 

  39. Vanderpump, M. P. et al. The development of ischemic heart disease in relation to autoimmune thyroid disease in a 20-year follow-up study of an English community. Thyroid 6, 155–160 (1996).

    CAS  PubMed  Google Scholar 

  40. Slag, M. F. et al. Hypothyroxinemia in critically ill patients as a predictor of high mortality. JAMA 245, 43–45 (1981).

    CAS  PubMed  Google Scholar 

  41. Iglesias, P. et al. Alterations in thyroid function tests in aged hospitalized patients: prevalence, aetiology and clinical outcome. Clin. Endocrinol. (Oxf.) 70, 961–967 (2009).

    CAS  Google Scholar 

  42. Franklyn, J. A. Thyroid disease and its treatment: short- and long-term consequences. J. R. Coll. Physicians Lond. 33, 564–567 (1999).

    CAS  PubMed  Google Scholar 

  43. Osman, F., Gammage, M. D. & Franklyn, J. A. Thyroid disease and its treatment: short-term and long-term cardiovascular consequences. Curr. Opin. Pharmacol. 1, 626–631 (2001).

    CAS  PubMed  Google Scholar 

  44. van den Beld, A. W., Visser, T. J., Feelders, R. A., Grobbee, D. E. & Lamberts, S. W. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men. J. Clin. Endocrinol. Metab. 90, 6403–6409 (2005).

    CAS  PubMed  Google Scholar 

  45. Lloyd-Jones, D. et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 121, 948–954 (2010).

    PubMed  Google Scholar 

  46. Klein, I. & Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 344, 501–509 (2001).

    CAS  PubMed  Google Scholar 

  47. Biondi, B. & Cooper, D. S. The clinical significance of subclinical thyroid dysfunction. Endocr. Rev. 29, 76–131 (2008).

    CAS  PubMed  Google Scholar 

  48. Biondi, B. & Klein, I. Hypothyroidism as a risk factor for cardiovascular disease. Endocrine 24, 1–13 (2004).

    CAS  PubMed  Google Scholar 

  49. Kahaly, G. J. & Dillmann, W. H. Thyroid hormone action in the heart. Endocr. Rev. 26, 704–728 (2005).

    CAS  PubMed  Google Scholar 

  50. Kahaly, G. J. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid 10, 665–679 (2000).

    CAS  PubMed  Google Scholar 

  51. Luboshitzky, R., Aviv, A., Herer, P. & Lavie, L. Risk factors for cardiovascular disease in women with subclinical hypothyroidism. Thyroid 12, 421–425 (2002).

    PubMed  Google Scholar 

  52. Nagasaki, T. et al. Increased pulse wave velocity in subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 91, 154–158 (2006).

    CAS  PubMed  Google Scholar 

  53. Biondi, B. et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 84, 2064–2067 (1999).

    CAS  PubMed  Google Scholar 

  54. Vitale, G. et al. Left ventricular myocardial impairment in subclinical hypothyroidism assessed by a new ultrasound tool: pulsed tissue Doppler. J. Clin. Endocrinol. Metab. 87, 4350–4355 (2002).

    CAS  PubMed  Google Scholar 

  55. Lekakis, J. et al. Flow-mediated, endothelium-dependent vasodilation is impaired in subjects with hypothyroidism, borderline hypothyroidism, and high-normal serum thyrotropin (TSH) values. Thyroid 7, 411–414 (1997).

    CAS  PubMed  Google Scholar 

  56. Vescovi, P. P. et al. The spectrum of coagulation abnormalities in thyroid disorders. Semin. Thromb. Hemost. 37, 7–10 (2011).

    PubMed  Google Scholar 

  57. Cappola, A. R. & Ladenson, P. W. Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88, 2438–2444 (2003).

    CAS  PubMed  Google Scholar 

  58. Lindeman, R. D. et al. Subclinical hypothyroidism in a biethnic, urban community. J. Am. Geriatr. Soc. 47, 703–709 (1999).

    CAS  PubMed  Google Scholar 

  59. Holm, L. E., Blomgren, H. & Lowhagen, T. Cancer risks in patients with chronic lymphocytic thyroiditis. N. Engl. J. Med. 312, 601–604 (1985).

    CAS  PubMed  Google Scholar 

  60. Acton, R. T., Go, R. C. & Roseman, J. M. Genetics and cardiovascular disease. Ethn. Dis. 14, S2–8–16 (2004).

    PubMed  Google Scholar 

  61. Bak, S., Gaist, D., Sindrup, S. H., Skytthe, A. & Christensen, K. Genetic liability in stroke: a long-term follow-up study of Danish twins. Stroke 33, 769–774 (2002).

    PubMed  Google Scholar 

  62. Herskind, A. M. et al. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum. Genet. 97, 319–323 (1996).

    CAS  PubMed  Google Scholar 

  63. Rice, F., Harold, G. T. & Thapar, A. Assessing the effects of age, sex and shared environment on the genetic aetiology of depression in childhood and adolescence. J. Child Psychol. Psychiatry 43, 1039–1051 (2002).

    PubMed  Google Scholar 

  64. Madden, P. A., Pedersen, N. L., Kaprio, J., Koskenvuo, M. J. & Martin, N. G. The epidemiology and genetics of smoking initiation and persistence: crosscultural comparisons of twin study results. Twin Res. 7, 82–97 (2004).

    PubMed  Google Scholar 

  65. Umpierrez, G. E. et al. Thyroid dysfunction in patients with type 1 diabetes: a longitudinal study. Diabetes Care 26, 1181–1185 (2003).

    PubMed  Google Scholar 

  66. Gulseren, S. et al. Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction. Arch. Med. Res. 37, 133–139 (2006).

    PubMed  Google Scholar 

  67. Guimarães, J. M., de Souza, L. C., Baima, J. & Sichieri, R. Depression symptoms and hypothyroidism in a population-based study of middle-aged Brazilian women. J. Affect. Disord. 117, 120–123 (2009).

    PubMed  Google Scholar 

  68. Laursen, T. M., Munk-Olsen, T. & Gasse, C. Chronic somatic comorbidity and excess mortality due to natural causes in persons with schizophrenia or bipolar affective disorder. PLoS ONE 6, e24597 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bauer, M., Heinz, A. & Whybrow, P. C. Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Mol. Psychiatry 7, 140–156 (2002).

    CAS  PubMed  Google Scholar 

  70. Brix, T. H., Hansen, P. S., Kyvik, K. O. & Hegedüs, L. Cigarette smoking and risk of clinically overt thyroid disease: a population-based twin case–control study. Arch. Intern. Med. 160, 661–666 (2000).

    CAS  PubMed  Google Scholar 

  71. Belin, R. M., Astor, B. C., Powe, N. R. & Ladenson, P. W. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 89, 6077–6086 (2004).

    CAS  PubMed  Google Scholar 

  72. Davidsen, M., Kjoller, M. & Helweg-Larsen, K. The Danish National Cohort Study (DANCOS). Scand. J. Public Health 39, 131–135 (2011).

    PubMed  Google Scholar 

  73. Madsen, M., Andersen, A. M., Christensen, K., Andersen, P. K. & Osler, M. Does educational status impact adult mortality in Denmark? A twin approach. Am. J. Epidemiol. 172, 225–234 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Andersen, K. K. & Olsen, T. S. Reduced poststroke mortality in patients with stroke and atrial fibrillation treated with anticoagulants: results from a Danish quality-control registry of 22,179 patients with ischemic stroke. Stroke 38, 259–263 (2007).

    PubMed  Google Scholar 

  75. Woloshin, S., Schwartz, L. M. & Welch, H. G. The risk of death by age, sex, and smoking status in the United States: putting health risks in context. J. Natl Cancer Inst. 100, 845–853 (2008).

    PubMed  PubMed Central  Google Scholar 

  76. Hansen, P. S., Brix, T. H., Sorensen, T. I., Kyvik, K. O. & Hegedüs, L. Major genetic influence on the regulation of the pituitary-thyroid axis: a study of healthy Danish twins. J. Clin. Endocrinol. Metab. 89, 1181–1187 (2004).

    CAS  PubMed  Google Scholar 

  77. Brabant, G. et al. Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J. Clin. Endocrinol. Metab. 70, 403–409 (1990).

    CAS  PubMed  Google Scholar 

  78. Andersen, S., Pedersen, K. M., Bruun, N. H. & Laurberg, P. Narrow individual variations in serum T4 and T3 in normal subjects: a clue to the understanding of subclinical thyroid disease. J. Clin. Endocrinol. Metab. 87, 1068–1072 (2002).

    CAS  PubMed  Google Scholar 

  79. Karmisholt, J., Andersen, S. & Laurberg, P. Variation in thyroid function in subclinical hypothyroidism: importance of clinical follow-up and therapy. Eur. J. Endocrinol. 164, 317–323 (2011).

    CAS  PubMed  Google Scholar 

  80. Karmisholt, J., Andersen, S. & Laurberg, P. Variation in thyroid function tests in patients with stable untreated subclinical hypothyroidism. Thyroid 18, 303–308 (2008).

    PubMed  Google Scholar 

  81. Metso, S., Auvinen, A., Salmi, J., Huhtala, H. & Jaatinen, P. Increased long-term cardiovascular morbidity among patients treated with radioactive iodine for hyperthyroidism. Clin Endocrinol (Oxf.) 68, 450–457 (2008).

    Google Scholar 

  82. Warner, M. H. & Beckett, G. J. Mechanisms behind the non-thyroidal illness syndrome: an update. J. Endocrinol. 205, 1–13 (2010).

    CAS  PubMed  Google Scholar 

  83. Hamblin, P. S. et al. Relationship between thyrotropin and thyroxine changes during recovery from severe hypothyroxinemia of critical illness. J. Clin. Endocrinol. Metab. 62, 717–722 (1986).

    CAS  PubMed  Google Scholar 

  84. Karadag, F., Ozcan, H., Karul, A. B., Yilmaz, M. & Cildag, O. Correlates of non-thyroidal illness syndrome in chronic obstructive pulmonary disease. Respir. Med. 101, 1439–1446 (2007).

    PubMed  Google Scholar 

  85. Haugen, B. R. Drugs that suppress TSH or cause central hypothyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 23, 793–800 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Eskes, S. A. & Wiersinga, W. M. Amiodarone and thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 23, 735–751 (2009).

    CAS  PubMed  Google Scholar 

  87. Stockigt, J. R. & Lim, C. F. Medications that distort in vitro tests of thyroid function, with particular reference to estimates of serum free thyroxine. Best Pract. Res. Clin. Endocrinol. Metab. 23, 753–767 (2009).

    CAS  PubMed  Google Scholar 

  88. Barbesino, G. Drugs affecting thyroid function. Thyroid 20, 763–770 (2010).

    PubMed  Google Scholar 

  89. Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic. Dis. 40, 373–383 (1987).

    CAS  PubMed  Google Scholar 

  90. Toft, A. D. Thyroxine therapy. N. Engl. J. Med. 331, 174–180 (1994).

    CAS  PubMed  Google Scholar 

  91. McGue, M., Osler, M. & Christensen, K. Causal inference and observational research: the utility of twins. Perspect. Psychol. Sci. 5, 546–556 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 7, 177–188 (1986).

    CAS  PubMed  Google Scholar 

  93. Higgins, J., Thompson, S., Deeks, J. & Altman, D. Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J. Health Serv. Res. Policy 7, 51–61 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research was supported by unrestricted research grants from the Novo Nordisk Foundation. However, this manuscript was not supported by any specific funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, writing the paper, discussions of the content, and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Laszlo Hegedüs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thvilum, M., Brandt, F., Brix, T. et al. A review of the evidence for and against increased mortality in hypothyroidism. Nat Rev Endocrinol 8, 417–424 (2012). https://doi.org/10.1038/nrendo.2012.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing