Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gynaecomastia—pathophysiology, diagnosis and treatment

Key Points

  • Gynaecomastia is a common condition and is usually benign

  • Gynaecomastia typically results from an (absolute or relative) deficiency of androgen action or excessive estrogen action in the breast tissue

  • Gynaecomastia often resolves by itself or upon removal of the underlying cause (such as medication)

  • Treatment is indicated in men with symptoms (particularly pain and tenderness in the breast) and involves the use of androgens or antiestrogens

  • Surgery can be offered to selected patients when the condition does not resolve spontaneously or respond to medical treatment

Abstract

Gynaecomastia (enlargement of the male breast tissue) is a common finding in the general population. Most cases of gynaecomastia are benign and of cosmetic, rather than clinical, importance. However, the condition might cause local pain and tenderness, could occasionally be the result of a serious underlying illness or a medication, or be inherited. Breast cancer in men is much less common than benign gynaecomastia, and the two conditions can usually be distinguished by a careful physical examination. Estrogens are known to stimulate the growth of breast tissue, whereas androgens inhibit it; most cases of gynaecomastia result from deficient androgen action or excessive estrogen action in the breast tissue. In some cases, such as pubertal gynaecomastia, the breast enlargement resolves spontaneously. In other situations, more active treatment might be required to correct an underlying condition (such as hyperthyroidism or a benign Leydig cell tumour of the testis) or medications that could cause breast enlargement (such as spironolactone) might need to be discontinued. For men with hypogonadism, administration of androgens might be helpful, as might antiestrogen therapy in men with endogenous overproduction of estrogens. Surgery to remove the enlarged breast tissue might be necessary when gynaecomastia does not resolve spontaneously or with medical therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The action of different hormones on breast tissue.
Figure 2: Suggested algorithm for the evaluation and treatment of gynaecomastia.

Similar content being viewed by others

References

  1. Carlson, H. E. Approach to the patient with gynecomastia. J. Clin. Endocrinol. Metab. 96, 15–21 (2011).

    CAS  PubMed  Google Scholar 

  2. Narula, H. S. & Carlson, H. E. Gynecomastia. Endocrinol. Metab. Clin. North Am. 36, 497–519 (2007).

    CAS  PubMed  Google Scholar 

  3. Nydick, M., Bustos, J., Dale, J. H. Jr & Rawson, R. W. Gynecomastia in adolescent boys. JAMA 178, 449–454 (1961).

    CAS  PubMed  Google Scholar 

  4. Carlson, H. E. Gynecomastia. N. Engl. J. Med. 303, 795–799 (1980).

    CAS  PubMed  Google Scholar 

  5. Nuttall, F. Q. Gynecomastia as a physical finding in normal men. J. Clin. Endocrinol. Metab. 48, 338–340 (1979).

    CAS  PubMed  Google Scholar 

  6. Bannayan, G. A. & Hajdu, S. I. Gynecomastia: clinicopathologic study of 351 cases. Am. J. Clin. Pathol. 57, 431–437 (1972).

    CAS  PubMed  Google Scholar 

  7. Georgiadis, E. et al. Incidence of gynaecomastia in 954 young males and its relationship to somatometric parameters. Ann. Hum. Biol. 21, 579–587 (1994).

    CAS  PubMed  Google Scholar 

  8. Niewoehner, C. B. & Nuttal, F. Q. Gynecomastia in a hospitalized male population. Am. J. Med. 77, 633–638 (1984).

    CAS  PubMed  Google Scholar 

  9. Williams, M. J. Gynecomastia. Its incidence, recognition and host characterization in 447 autopsy cases. Am. J. Med. 34, 103–112 (1963).

    CAS  PubMed  Google Scholar 

  10. Braunstein, G. D. Clinical practice. Gynecomastia. N. Engl. J. Med. 357, 1229–1237 (2007).

    CAS  PubMed  Google Scholar 

  11. Lapid, O., Jolink, F. & Meijer, S. L. Pathological findings in gynecomastia: analysis of 5,113 breasts. Ann. Plast. Surg. http://dx.doi.org/10.1097/SAP.0b013e3182920aed.

  12. Kornegoor, R., Verschuur-Maes, A. H., Buerger, H. & van Diest, P. J. The 3-layered ductal epithelium in gynecomastia. Am. J. Surg. Pathol. 36, 762–768 (2012).

    PubMed  Google Scholar 

  13. Nicolis, G. L., Modlinger, R. S. & Gabrilove, J. L. A study of the histopathology of human gynecomastia. J. Clin. Endocrinol. Metab. 32, 173–178 (1971).

    CAS  PubMed  Google Scholar 

  14. Sasano, H., Kimura, M., Shizawa, S., Kimura, N. & Nagura, H. Aromatase and steroid receptors in gynecomastia and male breast carcinoma: an immunohistochemical study. J. Clin. Endocrinol. Metab. 81, 3063–3067 (1996).

    CAS  PubMed  Google Scholar 

  15. Dimitrakakis, C., Zhou, J. & Bondy, C. A. Androgens and mammary growth and neoplasia. Fertil. Steril. 77 (Suppl. 4), S26–S33 (2002).

    PubMed  Google Scholar 

  16. Kanhai, R. C., Hage, J. J., van Diest, P. J., Bloemena, E. & Mulder, J. W. Short-term and long-term histologic effects of castration and estrogen treatment on breast tissue of 14 male-to-female transsexuals in comparison with two chemically castrated men. Am. J. Surg. Pathol. 24, 74–80 (2000).

    CAS  PubMed  Google Scholar 

  17. Burgess, H. E. & Shousha, S. An immunohistochemical study of the long-term effects of androgen administration on female-to-male transsexual breast: a comparison with normal female breast and male breast showing gynaecomastia. J. Pathol. 170, 37–43 (1993).

    CAS  PubMed  Google Scholar 

  18. Eigeliene, N. et al. Androgens inhibit the stimulatory action of 17β-estradiol on normal human breast tissue in explant cultures. J. Clin. Endocrinol. Metab. 97, E1116–E1127 (2012).

    CAS  PubMed  Google Scholar 

  19. Dejager, S. et al. A comprehensive endocrine description of Kennedy's disease revealing androgen insensitivity linked to CAG repeat length. J. Clin. Endocrinol. Metab. 87, 3893–3901 (2002).

    CAS  PubMed  Google Scholar 

  20. Zinn, A. R. et al. Androgen receptor CAGn repeat length influences phenotype of 47,XXY (Klinefelter) syndrome. J. Clin. Endocrinol. Metab. 90, 5041–5046 (2005).

    CAS  PubMed  Google Scholar 

  21. Southren, A. L. et al. The conversion of androgens to estrogens in hyperthyroidism. J. Clin. Endocrinol. Metab. 38, 207–214 (1974).

    CAS  PubMed  Google Scholar 

  22. Gordon, G. G., Olivo, J., Rafil, F. & Southren, A. L. Conversion of androgens to estrogens in cirrhosis of the liver. J. Clin. Endocrinol. Metab. 40, 1018–1026 (1975).

    CAS  PubMed  Google Scholar 

  23. Binder, G. et al. Dominant transmission of prepubertal gynecomastia due to serum estrone excess: hormonal, biochemical, and genetic analysis in a large kindred. J. Clin. Endocrinol. Metab. 90, 484–492 (2005).

    CAS  PubMed  Google Scholar 

  24. Braunstein, G. D. Aromatase and gynecomastia. Endocr. Relat. Cancer 6, 315–324 (1999).

    CAS  PubMed  Google Scholar 

  25. Cleland, W. H., Mendelson, C. R. & Simpson, E. R. Effects of aging and obesity on aromatase activity of human adipose cells. J. Clin. Endocrinol. Metab. 60, 174–177 (1985).

    CAS  PubMed  Google Scholar 

  26. Reed, M. J. & Purohit, A. Breast cancer and the role of cytokines in regulating estrogen synthesis: an emerging hypothesis. Endocr. Rev. 18, 701–715 (1997).

    CAS  PubMed  Google Scholar 

  27. Ryde, C. M., Nicholls, J. E. & Dowsett, M. Steroid and growth factor modulation of aromatase activity in MCF7 and T47D breast carcinoma cell lines. Cancer Res. 52, 1411–1415 (1992).

    CAS  PubMed  Google Scholar 

  28. Christeff, N., Benassayag, C., Carli-Vielle, C., Carli, A. & Nunez, E. A. Elevated oestrogen and reduced testosterone levels in the serum of male septic shock patients. J. Steroid Biochem. 29, 435–440 (1988).

    CAS  PubMed  Google Scholar 

  29. Vona-Davis, L. & Rose, D. P. The obesity–inflammation–eicosanoid axis in breast cancer. J. Mammary Gland Biol. Neoplasia 18, 291–307 (2013).

    PubMed  Google Scholar 

  30. Irahara, N. et al. Possible involvement of aromatase overexpression induced by cyclo-oxygenase-2 in the pathogenesis of idiopathic gynecomastia. Endocr. Res. 31, 219–227 (2005).

    CAS  PubMed  Google Scholar 

  31. To, S. Q., Simpson, E. R., Knower, K. C. & Clyne, C. D. Involvement of early growth response factors in TNFα-induced aromatase expression in breast adipose. Breast Cancer Res. Treat. 138, 193–203 (2013).

    CAS  PubMed  Google Scholar 

  32. Czajka-Oraniec, I., Zgliczynski, W., Kurylowicz, A., Mikula, M. & Ostrowski, J. Association between gynecomastia and aromatase (CYP19) polymorphisms. Eur. J. Endocrinol. 158, 721–727 (2008).

    CAS  PubMed  Google Scholar 

  33. Eren, E. et al. Genetic variants of estrogen β and leptin receptors may cause gynecomastia in adolescent. Gene 541, 101–106 (2014).

    CAS  PubMed  Google Scholar 

  34. Gill, S., Peston, D., Vonderhaar, B. K. & Shousha, S. Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J. Clin. Pathol. 54, 956–960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ormandy, C. J. et al. Coexpression and cross-regulation of the prolactin receptor and sex steroid hormone receptors in breast cancer. J. Clin. Endocrinol. Metab. 82, 3692–3699 (1997).

    CAS  PubMed  Google Scholar 

  36. Carlson, H. E., Kane, P., Lei, Z. M., Li, X. & Rao, C. V. Presence of luteinizing hormone/human chorionic gonadotropin receptors in male breast tissues. J. Clin. Endocrinol. Metab. 89, 4119–4123 (2004).

    CAS  PubMed  Google Scholar 

  37. Humphreys, R. C., Lydon, J. P., O'Malley, B. W. & Rosen, J. M. Use of PRKO mice to study the role of progesterone in mammary gland development. J. Mammary Gland Biol. Neoplasia 2, 343–354 (1997).

    CAS  PubMed  Google Scholar 

  38. Ormandy, C. J. et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11, 167–178 (1997).

    CAS  PubMed  Google Scholar 

  39. Anderson, E. & Clarke, R. B. Steroid receptors and cell cycle in normal mammary epithelium. J. Mammary Gland Biol. Neoplasia 9, 3–13 (2004).

    PubMed  Google Scholar 

  40. Kleinberg, D. L. Role of IGF-I in normal mammary development. Breast Cancer Res. Treat. 47, 201–208 (1998).

    CAS  PubMed  Google Scholar 

  41. Ruan, W. & Kleinberg, D. L. Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140, 5075–5081 (1999).

    CAS  PubMed  Google Scholar 

  42. Stewart, A. J., Johnson, M. D., May, F. E. & Westley, B. R. Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J. Biol. Chem. 265, 21172–21178 (1990).

    CAS  PubMed  Google Scholar 

  43. Ruan, W., Monaco, M. E. & Kleinberg, D. L. Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action. Endocrinology 146, 1170–1178 (2005).

    CAS  PubMed  Google Scholar 

  44. Dundar, B., Dundar, N., Erci, T., Bober, E. & Büyükgebiz, A. Leptin levels in boys with pubertal gynecomastia. J. Pediatr. Endocrinol. Metab. 18, 929–934 (2005).

    CAS  PubMed  Google Scholar 

  45. Catalano, S. et al. Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J. Biol. Chem. 278, 28668–28676 (2003).

    CAS  PubMed  Google Scholar 

  46. Dieudonné, M.-N. et al. Sex steroids and leptin regulate 11β-hydroxysteroid dehydrogenase I and P450 aromatase expressions in human preadipocytes: sex specificities. J. Steroid Biochem. Mol. Biol. 99, 189–196 (2006).

    PubMed  Google Scholar 

  47. Fusco, R. et al. Cellular and molecular crosstalk between leptin receptor and estrogen receptor-α in breast cancer: molecular basis for a novel therapeutic setting. Endocr. Relat. Cancer 17, 373–382 (2010).

    CAS  PubMed  Google Scholar 

  48. Catalano, S. et al. Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor α in MCF-7 cells. J. Biol. Chem. 279, 19908–19915 (2004).

    CAS  PubMed  Google Scholar 

  49. Ozata, M., Ozdemir, I. C. & Licinio, J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695 (1999).

    CAS  PubMed  Google Scholar 

  50. Seminara, S. B., Oliveira, L. M., Beranova, M., Hayes, F. J. & Crowley, W. F. Genetics of hypogonadotropic hypogonadism. J. Endocrinol. Invest. 23, 560–565 (2000).

    CAS  PubMed  Google Scholar 

  51. Layman, L. C. Genetics of human hypogonadotropic hypogonadism. Am. J. Med. Genet. 89, 240–248 (1999).

    CAS  PubMed  Google Scholar 

  52. Gutzman, J. H., Miller, K. K. & Schuler, L. A. Endogenous human prolactin and not exogenous human prolactin induces estrogen receptor α and prolactin receptor expression and increases estrogen responsiveness in breast cancer cells. J. Steroid Biochem. Mol. Biol. 88, 69–77 (2004).

    CAS  PubMed  Google Scholar 

  53. Nahta, R., Hortobágyi, G. N. & Esteva, F. J. Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist 8, 5–17 (2003).

    CAS  PubMed  Google Scholar 

  54. Peres, R., Betsholtz, C., Westermark, B. & Heldin, C. H. Frequent expression of growth factors for mesenchymal cells in human mammary carcinoma cell lines. Cancer Res. 47, 3425–3429 (1987).

    CAS  PubMed  Google Scholar 

  55. McTernan, P. G. et al. Gender differences in the regulation of P450 aromatase expression and activity in human adipose tissue. Int. J. Obes. 24, 875–881 (2000).

    CAS  Google Scholar 

  56. Hembree, W. C. et al. Endocrine treatment of transsexual persons: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 94, 3132–3154 (2009).

    CAS  PubMed  Google Scholar 

  57. Oh, W. K. The evolving role of estrogen therapy in prostate cancer. Clin. Prostate Cancer 1, 81–89 (2002).

    CAS  PubMed  Google Scholar 

  58. Dobs, A. & Darkes, M. J. M. Incidence and management of gynecomastia in men treated for prostate cancer. J. Urol. 174, 1737–1742 (2005).

    PubMed  Google Scholar 

  59. DiRaimondo, C. V., Roach, A. C. & Meador, C. K. Gynecomastia from exposure to vaginal estrogen cream. N. Engl. J. Med. 302, 1089–1090 (1980).

    CAS  PubMed  Google Scholar 

  60. Cimorra, G. A., Gonzalez-Peirona, E. & Ferrandez, A. Percutaneous oestrogen-induced gynaecomastia: a case report. Br. J. Plast. Surg. 35, 209–210 (1982).

    CAS  PubMed  Google Scholar 

  61. Finkelstein, J. S., McCully, W. F., MacLaughlin, D. T., Godine, J. E. & Crowley, W. F. Jr. The mortician's mystery. Gynecomastia and reversible hypogonadotropic hypogonadism in an embalmer. N. Engl. J. Med. 318, 961–965 (1988).

    CAS  PubMed  Google Scholar 

  62. Harrington, J. M., Stein, G. F., Rivera, R. O. & de Morales, A. V. The occupational hazards of formulating oral contraceptives—a survey of plant employees. Arch. Environ. Health 33, 12–15 (1978).

    CAS  PubMed  Google Scholar 

  63. Pacyński, A., Budzyńska, A., Przylecki, S. & Robaczynski, J. Hyperestrogenism in pharmaceutical factory workers and their children as an occupational disease [Polish]. Endokrynol. Pol. 22, 149–154 (1971).

    PubMed  Google Scholar 

  64. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. McLachlan, J. A. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr. Rev. 22, 319–341 (2001).

    CAS  PubMed  Google Scholar 

  66. Degen, G. H. & Bolt, H. M. Endocrine disruptors: update on xenoestrogens. Int. Arch. Occup. Environ. Health 73, 433–441 (2000).

    CAS  PubMed  Google Scholar 

  67. Aksglaede, L., Juul, A., Leffers, H., Skakkebaek, N. E. & Andersson, A.-M. The sensitivity of the child to sex steroids: possible impact of exogenous estrogens. Hum. Reprod. Update 12, 341–349 (2006).

    CAS  PubMed  Google Scholar 

  68. Hotchkiss, A. K. et al. Fifteen years after “Wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol. Sci. 105, 235–259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Teilmann, G., Juul, A., Skakkebaek, N. E. & Toppari, J. Putative effects of endocrine disrupters on pubertal development in the human. Best Pract. Res. Clin. Endocrinol. Metab. 16, 105–121 (2002).

    CAS  PubMed  Google Scholar 

  70. Den Hond, E. et al. Internal exposure to pollutants and sexual maturation in Flemish adolescents. J. Expo. Sci. Environ. Epidemiol. 21, 224–233 (2011).

    CAS  PubMed  Google Scholar 

  71. Daxenberger, A., Ibarreta, D. & Meyer, H. H. Possible health impact of animal oestrogens in food. Hum. Reprod. Update 7, 340–355 (2001).

    CAS  PubMed  Google Scholar 

  72. Gavaler, J. S., Rosenblum, E. R., Deal, S. R. & Bowie, B. T. The phytoestrogen congeners of alcoholic beverages: current status. Proc. Soc. Exp. Biol. Med. 208, 98–102 (1995).

    CAS  PubMed  Google Scholar 

  73. Messina, M. Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil. Steril. 93, 2095–2104 (2010).

    CAS  PubMed  Google Scholar 

  74. Goh, S. Y. & Loh, K. C. Gynaecomastia and the herbal tonic “Dong Quai”. Singapore Med. J. 42, 115–116 (2001).

    CAS  PubMed  Google Scholar 

  75. Toorians, A. W., Bovee, T. F., De Rooy, J., Stolker, L. A. & Hoogenboom, R. L. Gynaecomastia linked to the intake of a herbal supplement fortified with diethylstilbestrol. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 27, 917–925 (2010).

    CAS  PubMed  Google Scholar 

  76. Jameel, J. K., Kneeshaw, P. J., Rao, V. S. & Drew, P. J. Gynaecomastia and the plant product “Tribulis terrestris”. Breast 13, 428–430 (2004).

    CAS  PubMed  Google Scholar 

  77. Geyer, H. et al. Nutritional supplements cross-contaminated and faked with doping substances. J. Mass Spectrom. 43, 892–902 (2008).

    CAS  PubMed  Google Scholar 

  78. Gourgari, E., Saloustros, E. & Stratakis, C. A. Large-cell calcifying Sertoli cell tumors of the testes in pediatrics. Curr. Opin. Pediatr. 24, 518–522 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Stratakis, C. A., Kirschner, L. S. & Carney, J. A. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J. Clin. Endocrinol. Metab. 86, 4041–4046 (2001).

    CAS  PubMed  Google Scholar 

  80. Stratakis, C. A. & Horvath, A. Carney complex. GeneReviews® [online], (2012).

    Google Scholar 

  81. Lefevre, H. et al. Prepubertal gynecomastia in Peutz–Jeghers syndrome: incomplete penetrance in a familial case and management with an aromatase inhibitor. Eur. J. Endocrinol. 154, 221–227 (2006).

    CAS  PubMed  Google Scholar 

  82. Young, S. et al. Feminizing Sertoli cell tumors in boys with Peutz–Jeghers syndrome. Am. J. Surg. Pathol. 19, 50–58 (1995).

    CAS  PubMed  Google Scholar 

  83. Gabrilove, J. L., Nicolis, G. L., Mitty, H. A. & Sohval, A. R. Feminizing interstitial cell tumor of the testis: personal observations and a review of the literature. Cancer 35, 1184–1202 (1975).

    CAS  PubMed  Google Scholar 

  84. Bercovici, J. P., Nahoul, K., Tater, D., Charles, J. F. & Scholler, R. Hormonal profile of Leydig cell tumors with gynecomastia. J. Clin. Endocrinol. Metab. 59, 625–630 (1984).

    CAS  PubMed  Google Scholar 

  85. Forest, M. G., Lecoq, A. & Saez, J. M. Kinetics of human chorionic gonadotropin-induced steroidogenic response of the human testis. II. plasma 17α-hydroxyprogesterone, Δ4-androstenedione, estrone, and 17β-estradiol: evidence for the action of human chorionic gonadotropin on intermediate enzymes implicated in steroid biosynthesis. J. Clin. Endocrinol. Metab. 49, 284–291 (1979).

    CAS  PubMed  Google Scholar 

  86. Kirschner, M. A., Lippman, A., Berkowitz, R., Mayrer, E. & Drejka, M. Estrogen production as a tumor marker in patients with gonadotropin-producing neoplasms. Cancer Res. 41, 1447–1450 (1981).

    CAS  PubMed  Google Scholar 

  87. Hassan, H. C., Cullen, I. M., Casey, R. G. & Rogers, E. Gynaecomastia: an endocrine manifestation of testicular cancer. Andrologia 40, 152–157 (2008).

    CAS  PubMed  Google Scholar 

  88. Hasle, H., Mellemgaard, A., Nielsen, J. & Hansen, J. Cancer incidence in men with Klinefelter syndrome. Br. J. Cancer 71, 416–420 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gabrilove, J. L., Sharma, D. C., Wortiz, H. H. & Dorfman, R. I. Feminizing adrenocortical tumors in the male: a review of 52 cases including a case report. Medicine 44, 37–79 (1965).

    CAS  PubMed  Google Scholar 

  90. Young, J. et al. Aromatase expression in a feminizing adrenocortical tumor. J. Clin. Endocrinol. Metab. 81, 3173–3176 (1996).

    CAS  PubMed  Google Scholar 

  91. Zayed, A., Stock, J. L., Liepman, M. K., Wollin, M. & Longcope, C. Feminization as a result of both peripheral conversion of androgens and direct estrogen production from an adrenocortical carcinoma. J. Endocrinol. Invest. 17, 275–278 (1994).

    CAS  PubMed  Google Scholar 

  92. Lafemina, J. & Brennan, M. F. Adrenocortical carcinoma: past, present, and future. J. Surg. Oncol. 106, 586–594 (2012).

    CAS  PubMed  Google Scholar 

  93. Fukami, M. et al. Genomic basis of aromatase excess syndrome: recombination- and replication-mediated rearrangements leading to CYP19A1 overexpression. J. Clin. Endocrinol. Metab. 98, E2013–E2021 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Stratakis, C. A. An aroma of complexity: how the unique genetics of aromatase (CYP19A1) explain diverse phenotypes from hens and hyenas to human gynecomastia, and testicular and other tumors. J. Clin. Endocrinol. Metab. 98, 4676–4681 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Agarwal, V. R. et al. Molecular basis of severe gynecomastia associated with aromatase expression in a fibrolamellar hepatocellular carcinoma. J. Clin. Endocrinol. Metab. 83, 1797–1800 (1998).

    CAS  PubMed  Google Scholar 

  96. Cavanaugh, J., Niewoehner, C. B. & Nuttall, F. Q. Gynecomastia and cirrhosis of the liver. Arch. Intern. Med. 150, 563–565 (1990).

    CAS  PubMed  Google Scholar 

  97. Wilson, J. D. Androgen abuse by athletes. Endocr. Rev. 9, 181–199 (1988).

    CAS  PubMed  Google Scholar 

  98. Basaria, S. Androgen abuse in athletes: detection and consequences. J. Clin. Endocrinol. Metab. 95, 1533–1543 (2010).

    CAS  PubMed  Google Scholar 

  99. Carpenter, P. C. Performance-enhancing drugs in sport. Endocrinol. Metab. Clin. North Am. 36, 481–495 (2007).

    CAS  PubMed  Google Scholar 

  100. Deepinder, F. & Braunstein, G. D. Drug-induced gynecomastia: an evidence-based review. Expert Opin. Drug Saf. 11, 779–795 (2012).

    CAS  PubMed  Google Scholar 

  101. Bowman, J. D., Kim, H. & Bustamante, J. J. Drug-induced gynecomastia. Pharmacotherapy 32, 1123–1140 (2012).

    CAS  PubMed  Google Scholar 

  102. Friedman, N. M. & Plymate, S. R. Leydig cell dysfunction and gynaecomastia in adult males treated with alkylating agents. Clin. Endocrinol. (Oxf.) 12, 553–556 (1980).

    CAS  Google Scholar 

  103. Smyth, C. M. & Bremner, W. J. Klinefelter syndrome. Arch. Intern. Med. 158, 1309–1314 (1998).

    CAS  PubMed  Google Scholar 

  104. Lanfranco, F., Kamischke, A., Zitzmann, M. & Nieschlag, E. Klinefelter's syndrome. Lancet 364, 273–283 (2004).

    CAS  PubMed  Google Scholar 

  105. Swerdlow, A. J. et al. Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J. Natl Cancer Inst. 97, 1204–1210 (2005).

    PubMed  Google Scholar 

  106. Zitzmann, M., Depenbusch, M., Gromoll, J. & Nieschlag, E. X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J. Clin. Endocrinol. Metab. 89, 6208–6217 (2004).

    CAS  PubMed  Google Scholar 

  107. Nuttall, F. Q. Gynecomastia. Mayo Clin. Proc. 85, 961–962 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Large, D. M. & Anderson, D. C. Twenty-four hour profiles of circulating androgens and oestrogens in male puberty with and without gynaecomastia. Clin. Endocrinol. (Oxf.) 11, 505–521 (1979).

    CAS  Google Scholar 

  109. Moore, D. C., Schlaepfer, L. V., Paunier, L. & Sizonenko, P. C. Hormonal changes during puberty: V. Transient pubertal gynecomastia: abnormal androgen-estrogen ratios. J. Clin. Endocrinol. Metab. 58, 492–499 (1984).

    CAS  PubMed  Google Scholar 

  110. Mieritz, M. G. et al. Elevated serum IGF-I, but unaltered sex steroid levels, in healthy boys with pubertal gynaecomastia. Clin. Endocrinol. (Oxf.) 80, 691–698 (2014).

    CAS  Google Scholar 

  111. Juul, A. et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J. Clin. Endocrinol. Metab. 78, 744–752 (1994).

    CAS  PubMed  Google Scholar 

  112. Bagatell, C. J. & Bremner, W. J. Androgens in men—uses and abuses. N. Engl. J. Med. 334, 707–714 (1996).

    CAS  PubMed  Google Scholar 

  113. Harman, S. M. et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 86, 724–731 (2001).

    CAS  PubMed  Google Scholar 

  114. Jacobs, E. C. Effects of starvation on sex hormones in the male. J. Clin. Endocrinol. Metab. 8, 227–232 (1948).

    CAS  PubMed  Google Scholar 

  115. Smith, S. R., Chhetri, M. K., Johanson, J., Radfar, N. & Migeon, C. J. The pituitary–gonadal axis in men with protein-calorie malnutrition. J. Clin. Endocrinol. Metab. 41, 60–69 (1975).

    CAS  PubMed  Google Scholar 

  116. Platt, S. S., Schulz, R. Z. & Kunstadter, R. H. Hypertrophy of the male breast associated with recovery from starvation. Bull. US Army Med. Dep. 7, 403–405 (1947).

    CAS  Google Scholar 

  117. Linn, S., Almagor, G. & Lamm, S. Gynecomastia among Ethiopian Jews. Public Health Rep. 101, 237 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sattin, R. W., Roisin, A., Kafrissen, M. E., Dugan, J. B. & Farer, L. S. Epidemic of gynecomastia among illegal Haitian entrants. Public Health Rep. 99, 504–510 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Schmitt, G. W., Shehadeh, I. & Sawin, C. T. Transient gynecomastia in chronic renal failure during chronic intermittent hemodialysis. Ann. Intern. Med. 69, 73–79 (1968).

    CAS  PubMed  Google Scholar 

  120. Karagiannis, A. & Harsoulis, F. Gonadal dysfunction in systemic diseases. Eur. J. Endocrinol. 152, 501–513 (2005).

    CAS  PubMed  Google Scholar 

  121. Handelsman, D. J. & Dong, Q. Hypothalamo-pituitary gonadal axis in chronic renal failure. Endocrinol. Metab. Clin. North Am. 22, 145–161 (1993).

    CAS  PubMed  Google Scholar 

  122. Sievertsen, G. D., Lim, V. S., Nakawatase, C. & Frohman, L. A. Metabolic clearance and secretion rates of human prolactin in normal subjects and in patients with chronic renal failure. J. Clin. Endocrinol. Metab. 50, 846–852 (1980).

    CAS  PubMed  Google Scholar 

  123. Hou, S. H., Grossman, S. & Molitch, M. E. Hyperprolactinemia in patients with renal insufficiency and chronic renal failure requiring hemodialysis or chronic ambulatory peritoneal dialysis. Am. J. Kidney Dis. 6, 245–249 (1985).

    CAS  PubMed  Google Scholar 

  124. Kley, H. K. et al. Conversion of androgens to estrogens in idiopathic hemochromatosis: comparison with alcoholic liver cirrhosis. J. Clin. Endocrinol. Metab. 61, 1–6 (1985).

    CAS  PubMed  Google Scholar 

  125. Farthing, M. J., Green, J. R., Edwards, C. R. & Dawson, A. M. Progesterone, prolactin, and gynaecomastia in men with liver disease. Gut 23, 276–279 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Van Thiel, D. H. Ethanol: its adverse effects upon the hypothalamic-pituitary-gonadal axis. J. Lab. Clin. Med. 101, 21–33 (1983).

    CAS  PubMed  Google Scholar 

  127. Ashkar, F. S., Smoak, W. M., Gilson, A. J. & Miller, R. Gynecomastia and mastoplasia in Graves' disease. Metabolism 19, 946–951 (1970).

    CAS  PubMed  Google Scholar 

  128. Becker, K. L., Winnacker, J. L., Matthews, M. J. & Higgins, G. A. Gynecomastia and hyperthyroidism. An endocrine and histological investigation. J. Clin. Endocrinol. Metab. 28, 277–285 (1968).

    CAS  PubMed  Google Scholar 

  129. Ridgway, E. C., Maloof, F. & Longcope, C. Androgen and oestrogen dynamics in hyperthyroidism. J. Endocrinol. 95, 105–115 (1982).

    CAS  PubMed  Google Scholar 

  130. Nomura, K. et al. High serum progesterone in hyperthyroid men with Graves' disease. J. Clin. Endocrinol. Metab. 66, 230–232 (1988).

    CAS  PubMed  Google Scholar 

  131. Ford, H. C., Cooke, R. R., Keightley, E. A. & Feek, C. M. Serum levels of free and bound testosterone in hyperthyroidism. Clin. Endocrinol. (Oxf.) 36, 187–192 (1992).

    CAS  Google Scholar 

  132. Wang, Y. et al. Unilateral gynecomastia and hypokalemic periodic paralysis as first manifestations of Graves' disease. Am. J. Med. Sci. 345, 504–506 (2013).

    PubMed  Google Scholar 

  133. Alesini, D. et al. Multimodality treatment of gynecomastia in patients receiving antiandrogen therapy for prostate cancer in the era of abiraterone acetate and new antiandrogen molecules. Oncology 84, 92–99 (2013).

    CAS  PubMed  Google Scholar 

  134. Evans, D. L., Pantanowitz, L., Dezube, B. J. & Aboulafia, D. M. Breast enlargement in 13 men who were seropositive for human immunodeficiency virus. Clin. Infect. Dis. 35, 1113–1119 (2002).

    PubMed  Google Scholar 

  135. Gewurz, B. E., Dezube, B. J. & Pantanowitz, L. HIV and the breast. AIDS Read. 15, 392–396, 399–402 (2005).

    PubMed  Google Scholar 

  136. Piroth, L. et al. Incidence of gynecomastia in men infected with HIV and treated with highly active antiretroviral therapy. Scand. J. Infect. Dis. 33, 559–560 (2001).

    CAS  PubMed  Google Scholar 

  137. Biglia, A. et al. Gynecomastia among HIV-infected patients is associated with hypogonadism: a case–control study. Clin. Infect. Dis. 39, 1514–1519 (2004).

    PubMed  Google Scholar 

  138. Imami, N., Antonopoulos, C., Hardy, G. A., Gazzard, B. & Gotch, F. M. Assessment of type 1 and type 2 cytokines in HIV type 1-infected individuals: impact of highly active antiretroviral therapy. AIDS Res. Hum. Retroviruses 15, 1499–1508 (1999).

    CAS  PubMed  Google Scholar 

  139. New, M. I. Male pseudohermaphroditism due to 17 α-hydroxylase deficiency. J. Clin. Invest. 49, 1930–1941 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Goldsmith, O., Solomon, D. H. & Horton, R. Hypogonadism and mineralocorticoid excess. The 17-hydroxylase deficiency syndrome. N. Engl. J. Med. 277, 673–677 (1967).

    CAS  PubMed  Google Scholar 

  141. Hershkovitz, E. et al. Homozygous mutation G539R in the gene for P450 oxidoreductase in a family previously diagnosed as having 17,20-lyase deficiency. J. Clin. Endocrinol. Metab. 93, 3584–3588 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rhéaume, E. et al. Congenital adrenal hyperplasia due to point mutations in the type II 3 β-hydroxysteroid dehydrogenase gene. Nat. Genet. 1, 239–245 (1992).

    PubMed  Google Scholar 

  143. Lutfallah, C. et al. Newly proposed hormonal criteria via genotypic proof for type II 3β-hydroxysteroid dehydrogenase deficiency. J. Clin. Endocrinol. Metab. 87, 2611–2622 (2002).

    CAS  PubMed  Google Scholar 

  144. OMIM Phenotypic Series. Hypogonadotropic hypogonadism with or without anosmia—147950 [online], (2014).

  145. Buck, C., Balasubramanian, R. & Crowley, W. F. Isolated gonadotropin-releasing hormone (GnRH) deficiency. GeneReviews® [online], (2013).

    Google Scholar 

  146. Sykiotis, G. P. et al. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc. Natl Acad. Sci. USA 107, 15140–15144 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Pitteloud, N., Durrani, S., Raivio, T. & Sykiotis, G. P. Complex genetics in idiopathic hypogonadotropic hypogonadism. Front. Horm. Res. 39, 142–153 (2010).

    CAS  PubMed  Google Scholar 

  148. Miraoui, H. et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am. J. Hum. Genet. 92, 725–743 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Layman, L. C. Hypogonadotropic hypogonadism. Endocrinol. Metab. Clin. North Am. 36, 283–296 (2007).

    CAS  PubMed  Google Scholar 

  150. Bhagavath, B. et al. Clinical and molecular characterization of a large sample of patients with hypogonadotropic hypogonadism. Fertil. Steril. 85, 706–713 (2006).

    CAS  PubMed  Google Scholar 

  151. Hiort, O. Clinical and molecular aspects of androgen insensitivity. Endocr. Dev. 24, 33–40 (2013).

    CAS  PubMed  Google Scholar 

  152. Shozu, M. et al. Estrogen excess associated with novel gain-of-function mutations affecting the aromatase gene. N. Engl. J. Med. 348, 1855–1865 (2003).

    CAS  PubMed  Google Scholar 

  153. Stratakis, C. A. et al. The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription. J. Clin. Endocrinol. Metab. 83, 1348–1357 (1998).

    CAS  PubMed  Google Scholar 

  154. Ham, S. et al. Overexpression of aromatase associated with loss of heterozygosity of the STK11 gene accounts for prepubertal gynecomastia in boys with Peutz–Jeghers syndrome. J. Clin. Endocrinol. Metab. 98, E1979–E1987 (2013).

    CAS  PubMed  Google Scholar 

  155. Wit, J. M., Hero, M. & Nunez, S. B. Aromatase inhibitors in pediatrics. Nat. Rev. Endocrinol. 8, 135–147 (2012).

    CAS  Google Scholar 

  156. Bertherat, J. et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J. Clin. Endocrinol. Metab. 94, 2085–2091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Braunstein, G. D. Gynecomastia. N. Engl. J. Med. 328, 490–495 (1993).

    CAS  PubMed  Google Scholar 

  158. Fentiman, I. S., Fourquet, A. & Hortobagyi, G. N. Male breast cancer. Lancet 367, 595–604 (2006).

    PubMed  Google Scholar 

  159. Ottini, L. et al. Male breast cancer. Crit. Rev. Oncol. Hematol. 73, 141–155 (2010).

    PubMed  Google Scholar 

  160. Risch, H. A. et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl Cancer Inst. 98, 1694–1706 (2006).

    CAS  PubMed  Google Scholar 

  161. Tai, Y. C., Domchek, S., Parmigiani, G. & Chen, S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl Cancer Inst. 99, 1811–1814 (2007).

    CAS  PubMed  Google Scholar 

  162. Rizzolo, P. et al. Male breast cancer: genetics, epigenetics, and ethical aspects. Ann. Oncol. 24 (Suppl. 8), viii75–viii82 (2013).

    PubMed  Google Scholar 

  163. Niewoehner, C. B. & Schorer, A. E. Gynaecomastia and breast cancer in men. BMJ 336, 709–713 (2008).

    PubMed  PubMed Central  Google Scholar 

  164. Perryman, R. L. & Thorner, M. O. The effects of hyperprolactinemia on sexual and reproductive function in men. J. Androl. 2, 233–242 (1981).

    Google Scholar 

  165. Ikard, R. W., Vavra, D., Forbes, R. C., Richman, J. C. & Roumie, C. L. Management of senescent gynecomastia in the Veterans Health Administration. Breast J. 17, 160–166 (2011).

    PubMed  Google Scholar 

  166. Hanavadi, S., Monypenny, I. J. & Mansel, R. E. Is mammography overused in male patients? Breast 15, 123–126 (2006).

    CAS  PubMed  Google Scholar 

  167. Nguyen, C. et al. Male breast disease: pictorial review with radiologic–pathologic correlation. Radiographics 33, 763–779 (2013).

    PubMed  Google Scholar 

  168. Boccardo, F. et al. Evaluation of tamoxifen and anastrozole in the prevention of gynecomastia and breast pain induced by bicalutamide monotherapy of prostate cancer. J. Clin. Oncol. 23, 808–815 (2005).

    CAS  PubMed  Google Scholar 

  169. Perdonà, S. et al. Efficacy of tamoxifen and radiotherapy for prevention and treatment of gynaecomastia and breast pain caused by bicalutamide in prostate cancer: a randomised controlled trial. Lancet Oncol. 6, 295–300 (2005).

    PubMed  Google Scholar 

  170. Tunio, M. A., Al-Asiri, M., Al-Amro, A., Bayoumi, Y. & Fareed, M. Optimal prophylactic and definitive therapy for bicalutamide-induced gynecomastia: results of a meta-analysis. Curr. Oncol. 19, e280–e288 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Khan, H. N., Rampaul, R. & Blamey, R. W. Management of physiological gynaecomastia with tamoxifen. Breast 13, 61–65 (2004).

    CAS  PubMed  Google Scholar 

  172. Lawrence, S. E., Faught, K. A., Vethamuthu, J. & Lawson, M. L. Beneficial effects of raloxifene and tamoxifen in the treatment of pubertal gynecomastia. J. Pediatr. 145, 71–76 (2004).

    CAS  PubMed  Google Scholar 

  173. Lapid, O., van Wingerden, J. J. & Perlemuter, L. Tamoxifen therapy for the management of pubertal gynecomastia: a systematic review. J. Pediatr. Endocrinol. Metab. 26, 803–807 (2013).

    CAS  PubMed  Google Scholar 

  174. Plourde, P. V., Kulin, H. E. & Santner, S. J. Clomiphene in the treatment of adolescent gynecomastia. Clinical and endocrine studies. Am. J. Dis. Child. 137, 1080–1082 (1983).

    CAS  PubMed  Google Scholar 

  175. Serretta, V. et al. A randomized trial comparing tamoxifen therapy vs. tamoxifen prophylaxis in bicalutamide-induced gynecomastia. Clin. Genitourin. Cancer 10, 174–179 (2012).

    PubMed  Google Scholar 

  176. Viani, G. A., Bernardes da Silva, L. G. & Stefano, E. J. Prevention of gynecomastia and breast pain caused by androgen deprivation therapy in prostate cancer: tamoxifen or radiotherapy? Int. J. Radiat. Oncol. Biol. Phys. 83, e519–e524 (2012).

    PubMed  Google Scholar 

  177. Plourde, P. V. et al. Safety and efficacy of anastrozole for the treatment of pubertal gynecomastia: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 89, 4428–4433 (2004).

    CAS  PubMed  Google Scholar 

  178. Zachmann, M., Eiholzer, U., Muritano, M., Werder, E. A. & Manella, B. Treatment of pubertal gynaecomastia with testolactone. Acta Endocrinol. Suppl. 279, 218–226 (1986).

    CAS  Google Scholar 

  179. Rhoden, E. L. & Morgentaler, A. Treatment of testosterone-induced gynecomastia with the aromatase inhibitor, anastrozole. Int. J. Impot. Res. 16, 95–97 (2004).

    CAS  PubMed  Google Scholar 

  180. Benveniste, O., Simon, A. & Herson, S. Successful percutaneous dihydrotestosterone treatment of gynecomastia occurring during highly active antiretroviral therapy: four cases and a review of the literature. Clin. Infect. Dis. 33, 891–893 (2001).

    CAS  PubMed  Google Scholar 

  181. Kuhn, J.-M. et al. Studies on the treatment of idiopathic gynaecomastia with percutaneous dihydrotestosterone. Clin. Endocrinol. (Oxf.) 19, 513–520 (1983).

    CAS  Google Scholar 

  182. Van Poppel, H. et al. Efficacy and tolerability of radiotherapy as treatment for bicalutamide-induced gynaecomastia and breast pain in prostate cancer. Eur. Urol. 47, 587–592 (2005).

    CAS  PubMed  Google Scholar 

  183. Fruhstorfer, B. H. & Malata, C. M. A systematic approach to the surgical treatment of gynaecomastia. Br. J. Plast. Surg. 56, 237–246 (2003).

    CAS  PubMed  Google Scholar 

  184. Kasielska, A. & Antoszewski, B. Surgical management of gynecomastia: an outcome analysis. Ann. Plast. Surg. 71, 471–475 (2013).

    CAS  PubMed  Google Scholar 

  185. Song, Y.-N. et al. Surgical treatment of gynecomastia: mastectomy compared to liposuction technique. Ann. Plast. Surg. http://dx.doi.org/10.1097/SAP.0b013e31827c7949.

  186. Rifka, S. M., Pita, J. C., Vigersky, R. A., Wilson, Y. A. & Loriaux, D. L. Interaction of digitalis and spironolactone with human sex steroid receptors. J. Clin. Endocrinol. Metab. 46, 338–344 (1978).

    CAS  PubMed  Google Scholar 

  187. Kaplan, S. A., Chung, D. E., Lee, R. K., Scofield, S. & Te, A. E. A 5-year retrospective analysis of 5α-reductase inhibitors in men with benign prostatic hyperplasia: finasteride has comparable urinary symptom efficacy and prostate volume reduction, but less sexual side effects and breast complications than dutasteride. Int. J. Clin. Pract. 66, 1052–1055 (2012).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.S.N. researched data for the article, contributed to discussion of the content and wrote the article. H.E.C. researched data for the article, contributed to discussion of the content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Harold E. Carlson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narula, H., Carlson, H. Gynaecomastia—pathophysiology, diagnosis and treatment. Nat Rev Endocrinol 10, 684–698 (2014). https://doi.org/10.1038/nrendo.2014.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing