Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging safety profile of JAK inhibitors in rheumatic disease

A Corrigendum to this article was published on 31 March 2017

This article has been updated

Key Points

  • Despite differences in selectivity between Janus kinase (JAK) inhibitors, a large overlap exists in their safety profiles

  • All JAK inhibitors have been associated with a decrease in neutrophil number, although changes in numbers of lymphocytes and natural killer cells vary between compounds

  • An increased risk of viral infections (particularly herpes zoster) seems to distinguish the safety profile of tofacitinib from that of biologic DMARDs

  • Similarly to tofacitinib, other JAK inhibitors also seem to increase the risk of herpes zoster infection despite differences in JAK selectivity

  • To date, no increased risk of malignancy has been reported with tofacitinib in rheumatoid arthritis; however, experience is limited and this risk must be evaluated in the long term with all JAK inhibitors

  • The prevention of herpes zoster and other opportunistic infections is both feasible and important in the setting of JAK inhibition for the treatment of autoimmune inflammatory diseases

Abstract

Tofacitinib is the first Janus kinase (JAK) inhibitor commercially approved for the treatment of rheumatoid arthritis. This compound and a number of other JAK inhibitors are currently being tested in phase II and III trials for the treatment of a variety of autoimmune inflammatory diseases. Whereas a characteristic safety profile is emerging for some JAK inhibitors, differences between individual agents might emerge on the basis of distinct potency against their molecular targets. Similarly to biological therapy, JAK inhibition can lead to serious and opportunistic infections, and viral infections seem to be particularly frequent. Although no malignancy signals have been identified to date, long-term follow-up and further research are needed to understand the risk of malignancy associated with these compounds. As is the case for biologic agents, vaccination is important to mitigate the risks of these emerging therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of JAK–STAT signalling in host defense and cellular homeostasis.

Similar content being viewed by others

Change history

  • 31 March 2017

    In 'Gastrointestinal perforation' of the 'Adverse effects of JAK inhibitors' section, in the sentence “In patients with RA receiving baricitinib, two cases of gastrointestinal perforations were reported (an incidence of 5 cases per 1,000 patient-years in the development program)” the incidence should have been 0.5 cases per 1,000 patient-years. This error has been corrected in the online version of the article.

References

  1. O'Shea, J. J., Pesu, M., Borie, D. C. & Changelian, P. S. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat. Rev. Drug Discov. 3, 555–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. O'Shea, J. J., Laurence, A. & McInnes, I. B. Back to the future: oral targeted therapy for RA and other autoimmune diseases. Nat. Rev. Rheumatol. 9, 173–182 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Leonard, W. J. & O'Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. O'Shea, J. J. & Murray, P. J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Shea, J. J. & Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36, 542–550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maertzdorf, J. et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS ONE 6, e26938 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark, J. D., Flanagan, M. E. & Telliez, J. B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57, 5023–5038 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Thoma, G. et al. Identification of a potent Janus kinase 3 inhibitor with high selectivity within the Janus kinase family. J. Med. Chem. 54, 284–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Genovese, M. C. et al. Longterm safety and efficacy of tocilizumab in patients with rheumatoid arthritis: a cumulative analysis of up to 4.6 years of exposure. J. Rheumatol. 40, 768–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Genovese, M. C. et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 58, 2968–2980 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Gabay, C. et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 381, 1541–1550 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wollenhaupt, J. et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J. Rheumatol. 41, 837–852 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Wollenhaupt, J. et al. THU0185. Tofacitinib, an oral JAK inhibitor, in the treatment of rheumatoid arthritis: safety and clinical and radiographic efficacy in open-label, long-term extension studies over 7 years. Ann. Rheum. Dis. 75 (Suppl. 2), 252 (2016).

    Google Scholar 

  15. van Vollenhoven, R. et al. THU0178. Relationship between NK cell count and important safety events in rheumatoid arthritis patients treated with tofacitinib. Ann. Rheum. Dis. 74 (Suppl. 2), 258–259 (2015).

    Google Scholar 

  16. Kremer, J. M. et al. Evaluation of the effect of tofacitinib on measured glomerular filtration rate in patients with active rheumatoid arthritis: results from a randomised controlled trial. Arthritis Res. Ther. 17, 95 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Genovese, M. C. et al. OP0029. Baricitinib, an oral Janus kinase (JAK)1/JAK2 inhibitor, in patients with active rheumatoid arthritis (RA) and an inadequate response to TNF inhibitors: results of the phase 3 RA-Beacon study [abstract]. Ann. Rheum. Dis. 74 (Suppl. 2), 75–76 (2015).

    Google Scholar 

  18. Smolen, J. et al. THU0166. Safety profile of baricitinib in patients with active RA: an integrated analysis [abstract]. Ann. Rheum. Dis. 75 (Suppl. 2), 243–244 (2016).

    Google Scholar 

  19. Tanaka, Y. et al. THU0209. Characterisation of changes in lymphocyte subsets in baricitinib-treated patients with rheumatoid arthritis in a phase 3 study (RA-BEAM) [abstract]. Ann. Rheum. Dis. 75, 262–263 (2016).

    Article  Google Scholar 

  20. Emery, P. et al. A7.16. Characterization of changes in lymphocyte subsets in baricitinib-treated patients with rheumatoid arthritis in two phase 3 studies [abstract]. Arthritis Rheumatol. 67 (Suppl. 10), 1047 (2016).

    Google Scholar 

  21. Dougados, M., et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann. Rheum. Dis. 76, 88–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Fleischmann, R. M. et al. A double-blind, placebo-controlled, twelve-week, dose-ranging study of decernotinib, an oral selective JAK-3 inhibitor, as monotherapy in patients with active rheumatoid arthritis. Arthritis Rheumatol. 67, 334–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi, T. et al. Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann. Rheum. Dis. 75, 1057–1064 (2015).

    Article  PubMed  Google Scholar 

  24. Kremer, J. M. et al. A phase 2b study of ABT-494, a selective JAK1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti–TNF therapy. Arthritis Rheumatol. 68, 2867–2877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Genovese, M. C. et al. A randomized phase 2b study of ABT-494, a selective JAK1 inhibitor in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Rheumatol. 68, 2857–2866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Westhovens, R. et al. Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2016-210104 (2016).

  27. Kavanaugh, A. et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2016-210105 (2016).

  28. Askling, J. et al. Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: meta-analysis of randomized controlled trials of adalimumab, etanercept, and infliximab using patient level data. Pharmacoepidemiol. Drug Saf. 20, 119–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Curtis, J. R. et al. Tofacitinib, an oral Janus kinase inhibitor: analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann. Rheum. Dis. 75, 831–841 (2015).

    Article  PubMed  Google Scholar 

  31. Weinblatt, M. E. et al. Safety of abatacept administered intravenously in treatment of rheumatoid arthritis: integrated analyses of up to 8 years of treatment from the abatacept clinical trial program. J. Rheumatol. 40, 787–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. van Vollenhoven, R. F. et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann. Rheum. Dis. 72, 1496–1502 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Smolen, J. S. et al. Golimumab in patients with active rheumatoid arthritis who have previous experience with tumour necrosis factor inhibitors: results of a long-term extension of the randomised, double-blind, placebo-controlled GO-AFTER study through week 160. Ann. Rheum. Dis. 71, 1671–1679 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Simon, T. A. et al. Malignancies in the rheumatoid arthritis abatacept clinical development programme: an epidemiological assessment. Ann. Rheum. Dis. 68, 1819–1826 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Bykerk, V. P. et al. Update on the safety profile of certolizumab pegol in rheumatoid arthritis: an integrated analysis from clinical trials. Ann. Rheum. Dis. 74, 96–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Burmester, G. R., Panaccione, R., Gordon, K. B., McIlraith, M. J. & Lacerda, A. P. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn's disease. Ann. Rheum. Dis. 72, 517–524 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Gottlieb, A. B. et al. Clinical trial safety and mortality analyses in patients receiving etanercept across approved indications. J. Drugs Dermatol. 10, 289–300 (2011).

    PubMed  Google Scholar 

  38. Dougados, M. et al. LB0001. Baricitinib, an oral Janus kinase (JAK)1/JAK2 inhibitor, in patients with active rheumatoid arthritis (RA) and an inadequate response to cDMARD therapy: results of the phase 3 RA-build study [abstract]. Ann. Rheum. Dis. 74 (Suppl. 2), 79 (2015).

    Google Scholar 

  39. Cohen, S. et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 66, 2924–2937 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Doran, M. F., Crowson, C. S., Pond, G. R., O'Fallon, W. M. & Gabriel, S. E. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum. 46, 2287–2293 (2002).

    Article  PubMed  Google Scholar 

  41. Harpaz, R., Ortega-Sanchez, I. R. & Seward, J. F. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb. Mortal. Wkly Rep. 57, 1–30 (2008).

    Google Scholar 

  42. Winthrop, K. L. et al. Association between the initiation of anti-tumor necrosis factor therapy and the risk of herpes zoster. JAMA 309, 887–895 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smitten, A. L. et al. The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom. Arthritis Rheum. 57, 1431–1438 (2007).

    Article  PubMed  Google Scholar 

  44. Schmajuk, G. et al. Receipt of disease-modifying antirheumatic drugs among patients with rheumatoid arthritis in Medicare managed care plans. JAMA 305, 480–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winthrop, K. L. & Furst, D. E. Rheumatoid arthritis and herpes zoster: risk and prevention in those treated with anti-tumour necrosis factor therapy. Ann. Rheum. Dis. 69, 1735–1737 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Winthrop, K. L. et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 66, 2675–2684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winthrop, K. et al. SAT0229. Herpes zoster and tofacitinib: the risk of concomitant nonbiologic therapy. Ann. Rheum. Dis. 74, 741 (2015).

    Article  Google Scholar 

  48. Curtis, J. R., Xie, F., Yun, H., Bernatsky, S. & Winthrop, K. L. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1843–1847 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Winthrop, K. L. et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1133–1138 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Genovese, M. C., van Vollenhoven, R., Bloom, B. J., Jiang, J. G. & Kinnman, N. A phase 2b, 12-week study of VX-509, an oral selective Janus kinase 3 inhibitor, in combination with background methotrexate in rheumatoid arthritis [abstract]. Arthritis Rheum. http://acrabstracts.org/abstract/a-phase-2b-12-week-study-of-vx-509-an-oral-selective-janus-kinase-3-inhibitor-in-combination-with-background-methotrexate-in-rheumatoid-arthritis/ (2013).

  51. Genovese, M. C., van Vollenhoven, R. F., Pacheco-Tena, C., Zhang, Y. & Kinnman, N. VX-509 (decernotinib), an oral selective JAK-3 inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheumatol. 68, 46–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Jung, C. W. et al. Efficacy and safety of ruxolitinib in Asian patients with myelofibrosis. Leuk. Lymphoma 56, 2067–2074 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Vannucchi, A. M. et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 372, 426–435 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khamashta, M. et al. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 1909–1916 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Winthrop, K. L. et al. Opportunistic infections and biologic therapies in immune-mediated inflammatory diseases: consensus recommendations for infection reporting during clinical trials and postmarketing surveillance. Ann. Rheum. Dis. 74, 2107–2116 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Wathes, R., Moule, S. & Milojkovic, D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N. Engl. J. Med. 369, 197–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Chapgier, A. et al. A partial form of recessive STAT1 deficiency in humans. J. Clin. Invest. 119, 1502–1514 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dupuis, S. et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. O'Shea, J. J., Holland, S. M. & Staudt, L. M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 368, 161–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xeljanz® (tofacitinib citrate) package insert (Pfizer, 2012).

  61. Genovese, M. C. et al. Baricitinib in patients with refractory rheumatoid arthritis. N. Engl. J. Med. 374, 1243–1252 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Cohen, S., Curtis, J. R., Fleischmann, R. & Chen, Y. 18-month worldwide post-marketing surveillance experience of tofacitinib [abstract 465]. Arthritis Rheum. 74 (Suppl.), S199 (2014).

    Google Scholar 

  63. Xie, F., Yun, H., Bernatsky, S. & Curtis, J. R. Risk of gastrointestinal perforation among rheumatoid arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis Rheumatol. 68, 2612–2617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marren, A., Chen, Y., Frazier, D. & Geier, J. THU0173. Pregnancy outcomes in the tofacitinib RA safety database through April 2014. Ann. Rheum. Dis. 74, 256–257 (2015).

    Article  Google Scholar 

  65. Singh, J. A. et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. (Hoboken) 68, 1–25 (2016).

    Article  Google Scholar 

  66. Zhang, J. et al. Association between vaccination for herpes zoster and risk of herpes zoster infection among older patients with selected immune-mediated diseases. JAMA 308, 43–49 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02538757 (2017).

  68. Rubin, L. G. et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin. Infect. Dis. 58, e44–e100 (2014).

    Article  PubMed  Google Scholar 

  69. Hales, C. M., Harpaz, R., Oretga-Sanchez, I. & Bialek, S. Update on recommendations for use of herpes zoster vaccine. MMWR Morbid. Mortal. Wkly Rep. 63, 729–731 (2014).

    Google Scholar 

  70. Pierson, D. L. et al. Varicella zoster virus DNA at inoculation sites and in saliva after Zostavax immunization. J. Infect. Dis. 203, 1542–1545 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Winthrop, K. et al. Assessment of immunogenicity of live zoster vaccination in rheumatoid arthritis patients on background methotrexate before and after initiating tofacitinib or placebo [abstract]. Arthritis Rheumatol. 67 (Suppl. 10), 12L (2016).

    Google Scholar 

  72. Oxman, M. N. et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med. 352, 2271–2284 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Morrison, V. A. et al. Long-term persistence of zoster vaccine efficacy. Clin. Infect. Dis. 60, 900–909 (2015).

    Article  PubMed  Google Scholar 

  74. Lal, H. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 372, 2087–2096 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks M. Morgove for assistance with formatting and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Winthrop.

Ethics declarations

Competing interests

The author declares that he has received research support from and has acted as a consultant for Abbvie, Astellis, Galapagos, Lilly, Pfizer, BMS and UCB.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winthrop, K. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol 13, 234–243 (2017). https://doi.org/10.1038/nrrheum.2017.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing