Skip to main content
Log in

Optimisation of Itraconazole Therapy Using Target Drug Concentrations

  • Review Articles
  • Target Concentration Intervention
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Itraconazole is a new triazole compound with a broad spectrum of activity against a number of fungal pathogens, including Aspergillus species. The drug is being used increasingly as prophylaxis in patients with immunodepression.

Itraconazole is highly lipophilic and only ionised at low pH. The absolute availability of capsules in healthy volunteers under fasting conditions is about 55% and is increased after a meal. Itraconazole is 99.8% bound to human plasma proteins and its apparent volume of distribution is about 11 L/kg. The drug is extensively metabolised by the liver. Among the metabolites, hydroxy-itraconazole is of particular interest because its antifungal activity measured in vitro is similar to that of the parent drug and its plasma concentration is 2 to 3 times higher than that of itraconazole.

Mean total itraconazole blood clearance determined in healthy volunteers following a single intravenous infusion was 39.6 L/h. After a single oral dose, the terminal elimination half-life of itraconazole is about 24 hours. The drug exhibits a dose-dependent pharmacokinetic behaviour.

Renal failure does not affect the pharmacokinetic properties of itraconazole; however, little is known about the effects of hepatic insufficiency. In immunocompromised patients the absorption of itraconazole is affected by gastrointestinal disorders caused by diseases and cytotoxic chemotherapy.

The pharmacokinetics of itraconazole may be significantly altered when the drug is coadministered with certain other agents. Itraconazole is a potent inhibitor of cytochrome P450 (CYP) 3A4 and, thus, can also considerably change the pharmacokinetics of other drugs. Such changes may have clinically relevant consequences.

Itraconazole appears to be well tolerated. Gastrointestinal disturbances and dizziness are the most frequently reported adverse effects.

Clinical studies in patients with haemotological malignancies suggest that plasma concentrations [measured by high performance liquid chromatography (HPLC) ≥250 μg/L itraconazole, or 750 to 1000 μg/L for itraconazole plus hydroxy-itraconazole, are required for effective prophylactic antifungal activity. It seems that a curative effect may be enhanced by ensuring that itraconazole plasma concentrations exceed 500 μg/L.

The marked intra- and inter-patient variability in the pharmacokinetics of the drug, and the fact that it is impossible to predict steady-state plasma concentrations from the initial dosage are major factors obscuring any clear relationship between dose and plasma concentrations and clinical efficacy. Thus, in patients with life-threatening fungal infections treated with itraconazole drug, plasma concentrations should be regularly monitored to ensure sufficient drug exposure for antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Joly V, Yeni P. Antifongiques: donnees generates. In: Carbon C, Regnier B, Saimot G, et al. Medicaments anti-infectieux. Paris: Medecine Sciences Flammarion, 1994: 449–53.

    Google Scholar 

  2. Grant SM, Clissold SP. Itraconazole: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 1989; 37: 310–44.

    Article  PubMed  CAS  Google Scholar 

  3. Odds FC, Vranckx L, Woestenborghs F. Antifungal susceptibility testing of yeasts: evaluation of technical variables for test automation. Antimicrob Agents Chemother 1995; 39: 2051–60.

    Article  PubMed  CAS  Google Scholar 

  4. Rex JH, Pfaller MA, Galgiani JN, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin Infect Dis 1997; 24: 235–47.

    Article  PubMed  CAS  Google Scholar 

  5. Hardin TC, Graybill JR, Fetchick R, et al. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother 1988; 32: 1310–3.

    Article  PubMed  CAS  Google Scholar 

  6. Heykants J, Van Peer A, Van de Velde V, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses 1989; 32 Suppl. 1: 67–87.

    PubMed  Google Scholar 

  7. Cartledge JD, Midgely J, Gazzard BG. Itraconazole solution: higher serum drug concentrations and better clinical response rates than the capsule formulation in acquired immunodeficiency syndrome patients with candidosis. J Clin Pathol 1997; 50: 477–80.

    Article  PubMed  CAS  Google Scholar 

  8. Gorlero F, Larosa E, Cauwenbergh G, et al. Itraconazole plasma and vaginal mucosal levels in patients with chronic vaginal candidosis treated with itraconazole 200 mg once daily for 3 consecutive days. Drug Invest 1993; 6: 22–4.

    Article  Google Scholar 

  9. Schafer-Korting M, Korting HC, Lukacs A, et al. Levels of itraconazole in skin blister fluid after a single oral dose during repetitive administration. J Am Acad Dermatol 1990; 22: 211–5.

    Article  PubMed  CAS  Google Scholar 

  10. Barone JA, Koh JG, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 1993; 37: 778–84.

    Article  PubMed  CAS  Google Scholar 

  11. Zimmermann T, Yeates RA, Laufen H, et al. Influence of concomitant food intake on oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 1994; 46: 147–50.

    Article  PubMed  CAS  Google Scholar 

  12. Van de Velde VJ, Van Peer AP, Heykants JJ, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclo-dextrin formulation of itraconazole. Pharmacotherapy 1996; 16: 424–8.

    PubMed  Google Scholar 

  13. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin 1997; 52: 235–7.

    Article  CAS  Google Scholar 

  14. Boelaert J, Schurgers M, Matthys E, et al. Itraconazole pharmacokinetics in patients with renal dysfunction. Antimicrob Agents Chemother 1988; 32: 1595–7.

    Article  PubMed  CAS  Google Scholar 

  15. Coronel B, Persat F, Dorez D, et al. Itraconazole concentrations during continuous haemofiltration. J Antimicrob Chemother 1994; 34: 448–9.

    Article  PubMed  CAS  Google Scholar 

  16. Arredondo G, Martinez-Jorda R, Calvo R, et al. Protein binding of itraconazole and fluconazole in patients with chronic renal failure. Int J Clin Pharmacol Ther 1994; 32: 361–4.

    PubMed  CAS  Google Scholar 

  17. Smith D, Van de Velde V, Woestenborghs R, et al. The pharmacokinetics of oral itraconazole in AIDS patients. J Pharm Pharmacol 1992; 44: 618–9.

    Article  PubMed  CAS  Google Scholar 

  18. Lazo de la Vega S, Volkow P, Yeates RA, et al. Administration of the antimycotic agents fluconazole and itraconazole to leukaemia patients: a comparative pharmacokinetic study. Drugs Under Exper Clin Res 1994; 20: 69–75.

    Google Scholar 

  19. May DB, Drew RH, Yedinak KC, et al. Effect of simultaneous didanosine administration on itraconazole absorption in healthy volunteers. Pharmacotherapy 1994; 14: 509–13.

    PubMed  CAS  Google Scholar 

  20. Tucker RM, Denning DW, Hanson H, et al. Interaction of azoles with rifampin, phenytoin and carbamazepine: in vitro and clinical observations. Clin Infect Dis 1992; 14: 165–74.

    Article  PubMed  CAS  Google Scholar 

  21. Bonay M, Jonville-Bera AP, Diot P, et al. Possible interaction between phenobarbital, carbamazepine and itraconazole. Drug Saf 1993; 9: 309–11.

    Article  PubMed  CAS  Google Scholar 

  22. Ducharme MP, Slaughter RL, Warbasse LH, et al. Itraconazole and hydroxyitraconazole serum concentrations are reduced more then ten fold by phenytoin. Clin Pharmacol Ther 1995; 58: 617–24.

    Article  PubMed  CAS  Google Scholar 

  23. Partanen J, Jalava KM, Neuvonen PJ. Itraconazole increases serum digoxin concentration. Pharmacol Toxicol 1996; 79: 274–6.

    Article  PubMed  CAS  Google Scholar 

  24. Pohjola Sintonen S, Viitasalo M, Toivonen L, et al. Itraconazole prevents terfenadine metabolism and increase risk of torsades de pointes ventricular tachycardia. Eur J Clin Pharmacol 1993; 45: 191–3.

    Article  PubMed  CAS  Google Scholar 

  25. McLachlan AJ, Tett SE. Effect of metabolic inhibitors on cyclosporine pharmacokinetics using a population approach. Ther Drug Monit 1998; 20: 390–5.

    Article  PubMed  CAS  Google Scholar 

  26. Buggia I, Zecca M, Alessandrino EP, et al. Itraconazole can increase systemic exposure to busulfan in patients given bone marrow transplantation. Anticancer Res 1996; 16 (4A): 2083–8.

    PubMed  CAS  Google Scholar 

  27. Olkkola KT, Backman JT, Neunoven PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55: 481–5.

    Article  PubMed  CAS  Google Scholar 

  28. Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is a potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56: 601–7.

    Article  PubMed  CAS  Google Scholar 

  29. Kivisto KT, Lamberg TS, Kantola T, et al. Buspirone concentrations are greatly increased by erythromycin and itraconazole. Eur J Clin Pharmacol 1997; 52 Suppl.: A134.

    Google Scholar 

  30. Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61.

    Article  PubMed  CAS  Google Scholar 

  31. Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61: 410–5.

    Article  PubMed  CAS  Google Scholar 

  32. Stein AG, Daneshmend TK, Warnock DW, et al. The effects of H2-receptor antagonists on the pharmacokinetics of itraconazole, a new oral antifungal [abstract. Br J Clin Pharmacol 1988; 27: 105P–6.

    Google Scholar 

  33. McClean KL, Sheelan GJ. Interaction between itraconazole and digoxin. Clin Infect Dis 1994; 18: 259–60.

    Article  PubMed  CAS  Google Scholar 

  34. Warnock DW, Turner A, Burke J. Comparison of high performance liquid chromatographic and microbiological methods for determination of itraconazole. J Antimicrob Chemother 1988; 21: 93–100.

    Article  PubMed  CAS  Google Scholar 

  35. Hostetler JS, Heykants J, demons KV, et al. Discrepancies in bioassay and chromatography determinations explained by metabolism of itraconazole to hydroxyitraconazole: studies of interpatient variations in concentrations. Antimicrob Agents Chemother 1993; 37: 2224–7.

    Article  PubMed  CAS  Google Scholar 

  36. Woestenborghs R, Lorreyne W, Heykants J. Determination of itraconazole in plasma and animal tissues by highperformance liquid chromatography. J Chromatogr 1987; 413: 332–7.

    Article  PubMed  CAS  Google Scholar 

  37. Poirier JM, Lebot M, Descamps P, et al. Determination of itraconazole and its active metabolite in plasma by column liquid chromatography. Ther Drug Monit 1994; 16: 602–7.

    Article  Google Scholar 

  38. Compas D, Touw DJ, de Goede PN. Rapid method for the analysis of itraconazole and hydroxyitraconazole in serum by high-performance liquid chromatography. J Chromatogr Biomed Appl 1996; 687: 453–6.

    Article  CAS  Google Scholar 

  39. Poirier JM, Cheymol G. A rapid and specific liquid chromatographic assay for the determination of itraconazole and hydroxyitraconazole in plasma. Ther Drug Monit 1997; 19: 247–8.

    Article  PubMed  CAS  Google Scholar 

  40. Brandsteterova E, Kubalec P, Rady A, et al. Determination of itraconazole and its metabolite using SPE-HPLC. Pharmazie 1995; 50: 597–9.

    PubMed  CAS  Google Scholar 

  41. Lacroix C, Wojciechowski F, Danger P. Simultaneous determination of itraconazole, hydroxy-itraconazole and amphotericin B in human plasma by HPLC with photodiode array detection. Ann Biol Clin 1995; 53: 293–7.

    CAS  Google Scholar 

  42. Poirier JM, Hardy S, Isnard F, et al. Plasma itraconazole concentrations in patients with neutropenia: advantages of a divided daily dose regimen. Ther Drug Monit 1997; 19: 525–9.

    Article  PubMed  CAS  Google Scholar 

  43. Berenguer J, Ali NM, Allende MC, et al. Itraconazole for experimental pulmonary aspergillosis: comparison with amphotericin B, interaction with cyclosporin A, and correlation between therapeutic response and itraconazole concentrations in plasma. Antimicrob Agents Chemother 1994; 38: 1303–8.

    Article  PubMed  CAS  Google Scholar 

  44. Boogaerts MA, Verhoef GE, Zachee P, et al. Antifungal prophylaxis with itraconazole in prolonged neutropenia: correlation with plasma concentrations. Mycoses 1989; 32 Suppl. 1: 103–8.

    PubMed  Google Scholar 

  45. Tricot G, Joosten E, Boogaerts MA, et al. Ketoconazole vs itraconazole for antifungal prophylaxis in patients with severe granulocytopenia: preliminary results of two nonrandomised studies. Rev Infect Dis 1987; 9 Suppl. 1: S94–99.

    PubMed  Google Scholar 

  46. Bradford CR, Prentice AG, Warnock DW, et al. Comparison of the multiple dose pharmacokinetics of two formulations of itraconazole during remission induction for acute myeloblastic leukaemia. J Antimicrob Chemother 1991; 28: 555–60.

    Article  PubMed  CAS  Google Scholar 

  47. Persat F, Marzullo C, Guyotat D, et al. Plasma itraconazole concentrations in neutropenic patients after repeated high-dose treatment. Eur J Cancer 1992; 28 (A): 838–41.

    Article  Google Scholar 

  48. Petropoulou T, Liese J, Tintelnot K, et al. Long-term treatment of patients with chronic granulomatous disease (CGD) for prophylaxis against Aspergillus infections [in German. Mycoses 1994; 37 Suppl. 2: 64–9.

    PubMed  Google Scholar 

  49. Prentice AG, Warnock DW, Johnson SAN, et al. Multiple dose pharmacokinetics of an oral solution of itraconazole in patients receiving chemotherapy for acute myeloid leukaemia. J Antimicrob Chemother 1995; 36: 657–63.

    Article  PubMed  CAS  Google Scholar 

  50. Poirier JM, Berlioz F, Isnard F, et al. Marked intra- and interpatient variability of itraconazole steady state plasma concentrations. Therapie 1996; 51: 163–7.

    PubMed  CAS  Google Scholar 

  51. Levron JC, Le Moing, Chwetzoff E. Exemple of active therapeutic drug monitoring: itraconazole [in French. Therapie 1996; 51: 502–6.

    PubMed  CAS  Google Scholar 

  52. Eichel M, Just-Niibling G, Helm EB, et al. Itraconazole suspension in the treatment of HIV-infected patients suffering from fluconazole-resistant oropharyngeal and oesophageal candidosis [in German. Mycoses 1996; 39 Suppl. 1: 102–6.

    Article  PubMed  Google Scholar 

  53. Reynes J, Bazin C, Ajana F, et al. Pharmacokinetics of itraconazole (oral solution) in two groups of human immunodeficiency virus-infected adults with oral candidiasis. Antimicrob Agents Chemother 1997; 41: 2554–8.

    PubMed  CAS  Google Scholar 

  54. Haria M, Bryson HM, Goa KL. Itraconazole: a reappraisal of its pharmacological properties and therapeutic use in the management of superficial fungal infections. Drugs 1996; 51: 585–620.

    Article  PubMed  CAS  Google Scholar 

  55. Prentice AG, Warnock DW, Johnson SAN, et al. Multiple dose pharmacokinetics of an oral solution of itraconazole in autologous bone marrow transplant recipients. J Antimicrob Chemother 1994; 34: 247–52.

    Article  PubMed  CAS  Google Scholar 

  56. Vandewoude K, Vogelaers D, Decruyenaere J, et al. Concentrations in plasma and safety of 7 days of intravenous itraconazole followed by 2 weeks of oral itraconazole solution in patients in intensive care units. Antimicrob Agents Chemother 1997; 41: 2714–8.

    PubMed  CAS  Google Scholar 

  57. Graybill JR. Is there a correlation between serum antifungal drug concentration and clinical outcome? J Infect 1994; 28 Suppl. 1: 17–24.

    Article  PubMed  Google Scholar 

  58. British Society for Antimicrobial Chemotherapy Working Party. Laboratory monitoring of antifungal chemotherapy. Lancet 1991; 337: 1577–80.

    Google Scholar 

  59. Working Party of the British Society for Antimicrobial Chemotherapy. Chemoprophylaxis for candidosis and aspergillosis in neutropenia and transplantation: a review and recommendations. J Antimicrob Chemother 1993; 32: 5–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Cheymol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poirier, JM., Cheymol, G. Optimisation of Itraconazole Therapy Using Target Drug Concentrations. Clin Pharmacokinet 35, 461–473 (1998). https://doi.org/10.2165/00003088-199835060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199835060-00004

Keywords

Navigation