Maturity-onset diabetes of the young (MODY): an update

J Pediatr Endocrinol Metab. 2015 Mar;28(3-4):251-63. doi: 10.1515/jpem-2014-0384.

Abstract

Maturity-onset diabetes of the young (MODY) is a group of monogenic disorders characterized by autosomal dominantly inherited non-insulin dependent form of diabetes classically presenting in adolescence or young adults before the age of 25 years. MODY is a rare cause of diabetes (1% of all cases) and is frequently misdiagnosed as Type 1 diabetes (T1DM) or Type 2 diabetes (T2DM). A precise molecular diagnosis is essential because it leads to optimal treatment of the patients and allows early diagnosis for their asymptomatic family members. Mutations in the glucokinase (GCK) (MODY 2) and hepatocyte nuclear factor (HNF)1A/4A (MODY 3 and MODY 1) genes are the most common causes of MODY. GCK mutations cause a mild, asymptomatic, and stable fasting hyperglycemia usually requiring no specific treatment. However, mutations in the HNF1A and HNF4A cause a progressive pancreatic β-cell dysfunction and hyperglycemia that can result in microvascular complications. Sulfonylureas are effective in these patients by acting on adenosine triphosphate (ATP)-sensitive potassium channels, although insulin therapy may be required later in life. Mutations in the HNF1B (MODY 5) is associated with pancreatic agenesis, renal abnormalities, genital tract malformations, and liver dysfunction. Compared to MODY 1, 2, 3, and 5, the remaining subtypes of MODY have a much lower prevalence. In this review, we summarize the main clinical and laboratory characteristics of the common and rarer causes of MODY.

Publication types

  • Review

MeSH terms

  • Adult
  • Diabetes Mellitus, Type 2* / diagnosis
  • Diabetes Mellitus, Type 2* / epidemiology
  • Diabetes Mellitus, Type 2* / genetics
  • Diabetes Mellitus, Type 2* / therapy
  • Glucokinase / genetics
  • Hepatocyte Nuclear Factor 1-alpha / genetics
  • Hepatocyte Nuclear Factor 4 / genetics
  • Humans
  • Mutation
  • Prevalence
  • Sulfonylurea Compounds / therapeutic use

Substances

  • HNF1A protein, human
  • HNF4A protein, human
  • Hepatocyte Nuclear Factor 1-alpha
  • Hepatocyte Nuclear Factor 4
  • Sulfonylurea Compounds
  • Glucokinase