Skip to main content
Log in

Basiliximab

A Review of its Use as Induction Therapy in Renal Transplantation

  • Adis Drug Evaluation
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Basiliximab (Simulect®) is a recombinant chimeric murine/human IgG1 monoclonal anti-interleukin-2 receptor antibody that is indicated for the prevention of acute organ rejection in adult and pediatric renal transplant recipients in combination with other immunosuppressive agents.

Induction therapy with two doses (day 0 and day 4) of intravenous basiliximab as part of double- or triple-immunotherapy regimens in adult renal transplant recipients reduces acute rejection episodes without increasing the incidence of adverse events. Compared with rabbit-derived antithymocyte globulin (RATG), basiliximab is generally associated with similar efficacy in standard-risk patients, but reduced efficacy in high-risk patients. Initial results indicate that induction with basiliximab is associated with a higher rate of biopsy-proven acute rejection than alemtuzumab induction. Basiliximab is generally associated with a tolerability profile that is similar to that reported with placebo, and better than that reported with RATG. As with other induction agents, basiliximab has not demonstrated improved graft or patient survival over the long term (periods of up to 7 years). Basiliximab induction allows for reduced dosage of corticosteroids or calcineurin inhibitors, while maintaining adequate immunosuppression, thereby reducing the potential for adverse effects associated with these coadministered agents. Thus, basiliximab provides an effective, well tolerated option for the prophylaxis of acute renal transplant rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Fig. 1

Similar content being viewed by others

References

  1. Ciancio G, Burke GW, Miller J. Induction therapy in renal transplantation: an overview of current developments. Drugs 2007; 67(18): 2667–80

    Article  PubMed  CAS  Google Scholar 

  2. Ferguson R. Acute rejection episodes: best predictor of long-term primary cadaveric renal transplant survival. Clin Transplant 1994; 8 (3 Pt 2): 328–31

    PubMed  CAS  Google Scholar 

  3. Arias M, Campistol JM, Vincenti F. Evolving treands in induction therapy. Transplant Rev 2009; 23: 94–102

    Article  Google Scholar 

  4. Kälble T, Alcaraq A, Budde K, et al. European Association of Urology: guidelines on renal transplantation [online]. Available from URL: http://www.uroweb.org/fileadmin/tx_eauguidelines/2009/Full/Renal_Transplant.pdf[Accessed 2009 Oct 12]

  5. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009; 9 Suppl. 3: S1-S157

  6. Tang IY, Meier-Kriesche HU, Kaplan B. Immunosuppressive strategies to improve outcomes of kidney transplantation. Semin Nephrol 2007 Jul; 27(4): 377–92

    Article  PubMed  CAS  Google Scholar 

  7. Chapman TM, Keating GM. Basiliximab: a review of its use as induction therapy in renal transplantation. Drugs 2003; 63(24): 2803–35

    Article  PubMed  CAS  Google Scholar 

  8. European Medicines Agency. Simulect® (basiliximab): summary of product characteristics [online]. Available from URL:http://www.emea.europa.eu/humandocs/PDFs/EPAR/Simulect/H-207-PI-en.pdf[Accessed 2009 Sep 14]

  9. Novartis Pharmaceuticals Corporation. Simulect® (basiliximab) for injection: prescribing information [online]. Available from URL: www.pharma.us. novartis.com/product/pi/pdf/simulect.pdf [Accessed 2009 Sep 7]

  10. Amlot PL, Rawlings E, Fernando ON, et al. Prolonged action of a chimeric interleukin-2 receptor (CD25) monoclonal antibody used in cadaveric renal transplantation. Transplantation 1995 Oct 15; 60: 748–56

    Article  PubMed  CAS  Google Scholar 

  11. European Medicines Agency. Simulect® (basiliximab): European public assessment report: scientific discussion [online]. Available from URL:http://www.emea.europa.eu/humandocs/PDFs/EPAR/Simulect/150298en6.pdf[Accessed 2009 Sep 14]

  12. Binder M, Vogtle FN, Michelfelder S, et al. Identification of their epitope reveals the structural basis for the mechanism of action of the immunosuppressive antibodies basiliximab and daclizumab. Cancer Res 2007 Apr 15; 67(8): 3518–23

    Article  PubMed  CAS  Google Scholar 

  13. Baan CC, VanRiemsdijk-Overbeeke IC, Boelaars-Van Haperen MJAM, et al. Inhibition of the IL-15 pathway in anti-CD25 mAb treated renal allograft recipients. Transpl Immunol 2002; 10(1): 81–7

    Article  PubMed  CAS  Google Scholar 

  14. Kovarik JM, Kahan BD, Rajagopalan PR, et al. Population pharmaco-kinetics and exposure-response relationships for basiliximab in kidney transplantation. The U.S. Simulect Renal Transplant Study Group. Transplantation 1999 Nov 15; 68(9): 1288–94

    Article  PubMed  CAS  Google Scholar 

  15. Haba T, Uchida K, Katayama A, et al. Pharmacokinetics and pharmacodynamics of a chimeric interleukin-2 receptor monoclonal antibody, basiliximab, in renal transplantation: a comparison between Japanese and non-Japanese patients. Transplant Proc 2001 Nov 31; 33(7-8): 3174–5

    Article  PubMed  CAS  Google Scholar 

  16. Kovarik JM, Rawlings E, Sweny P, et al. Prolonged immunosuppressive effect and minimal immunogenicity from chimeric (CD25) monoclonal antibody SDZ CHI 621 in renal transplantation. Transplant Proceedings 1996 Apr; 28(2): 913–4

    CAS  Google Scholar 

  17. Sterkers G, Baudouin V, Ansart-Pirenne H, et al. Duration of action of a chimeric interleukin-2 receptor monoclonal antibody, basiliximab, in pediatric kidney transplant recipients. Transplant Proc 2000 Dec; 32(8): 2757–9

    Article  PubMed  CAS  Google Scholar 

  18. Lebranchu Y, Bridoux F, Buchler M, et al. Immunoprophylaxis with basiliximab compared with antithymocyte globulin in renal transplant patients receiving MMF-containing triple therapy. Am J Transplant 2002 Jan; 2(1): 48–56

    Article  PubMed  CAS  Google Scholar 

  19. Kovarik J, Wolf P, Cisterne JM, et al. Disposition of basiliximab, an interleukin-2 receptor monoclonal antibody, in recipients of mismatched cadaver renal allografts. Transplantation 1997 Dec 27; 64(12): 1701–5

    Article  PubMed  CAS  Google Scholar 

  20. Kovarik JM, Moore R, Wolf P, et al. Screening for basiliximab exposure-response relationships in renal allotransplantation. Clin Transplant 1999 Feb; 13 (1 Pt 1): 32–8

    Article  PubMed  CAS  Google Scholar 

  21. Kovarik JM, Pescovitz MD, Sollinger HW, et al. Differential influence of azathioprine and mycophenolate mofetil on the disposition of basiliximab in renal transplant patients. Clin Transplant 2001 Apr; 15(2): 123–30

    Article  PubMed  CAS  Google Scholar 

  22. Strehlau J, Pape L, Offner G, et al. Interleukin-2 receptor antibody-induced alterations of ciclosporin dose requirements in paediatric transplant recipients [letter]. Lancet 2000 Oct 14; 356(9238): 1327–8

    Article  PubMed  CAS  Google Scholar 

  23. Sifontis NM, Benedetti E, Vasquez EM. Clinically significant drug interaction between basiliximab and tacrolimus in renal transplant recipients. Transplant Proc 2002 Aug; 34: 1730–2

    Article  PubMed  CAS  Google Scholar 

  24. Kovarik JM, Offner G, Broyer M, et al. A rational dosing algorithm for basiliximab (Simulect) in pediatric renal transplantation based on pharma-cokinetic-dynamic evaluations. Transplantation 2002 Oct 15; 74(7): 966–71

    Article  PubMed  CAS  Google Scholar 

  25. Kovarik JM, Korn A, Chodoff L. Within-patient controlled assessment of the influence of basiliximab on cyclosporine in pediatric de novo renal transplant recipients. Transplant Proc 2001 Nov-2001 31; 33(7-8): 3172–3

    Article  PubMed  CAS  Google Scholar 

  26. Kahan BD, Rajagopalan PR, Hall M. Reduction of the occurrence of acute cellular rejection along renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. Transplantation 1999 Jan 27; 67(2): 276–84

    Article  PubMed  CAS  Google Scholar 

  27. Lawen JG, Davies EA, Mourad G, et al. Randomized double-blind study of immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with mycophenolate mofetilcontaining triple therapy in renal transplantation. Transplantation 2003 Jan 15; 75(1): 37–43

    Article  PubMed  CAS  Google Scholar 

  28. Nashan B, Moore R, Amlot P, et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. Lancet 1997 Oct 25; 350(9086): 1193–8

    Article  PubMed  CAS  Google Scholar 

  29. Ponticelli C, Yussim A, Cambi V, et al. A randomized, double-blind trial of basiliximab immunoprophylaxis plus triple therapy in kidney transplant recipients. Transplantation 2001 Oct 15; 72(7): 1261–7

    Article  PubMed  CAS  Google Scholar 

  30. Parrott NR, Hammad AQ, Watson CJ, et al. Multicenter, randomized study of the effectiveness of basiliximab in avoiding addition of steroids to cyclosporine A monotherapy in renal transplant recipients. Transplantation 2005 Feb 15; 79(3): 344–8

    Article  PubMed  CAS  Google Scholar 

  31. Brennan DC, Daller JA, Lake KD, et al. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med 2006 Nov 9; 355(19): 1967–77

    Article  PubMed  CAS  Google Scholar 

  32. Kyllonen LE, Eklund BH, Pesonen EJ, et al. Single bolus antithymocyte globulin versus basiliximab induction in kidney transplantation with cyclosporine triple immunosuppression: efficacy and safety. Transplantation 2007 Jul 15; 84(1): 75–82

    Article  PubMed  CAS  Google Scholar 

  33. Mourad G, Rostaing L, Legendre C, et al. Sequential protocols using basiliximab versus antithymocyte globulins in renal-transplant patients receiving mycophenolate mofetil and steroids. Transplantation 2004 Aug 27; 78(4): 584–90

    Article  PubMed  CAS  Google Scholar 

  34. Sollinger H, Kaplan B, Pescovitz MD, et al. Basiliximab versus antithymocyte globulin for prevention of acute renal allograft rejection. Transplantation 2001 Dec 27; 72(12): 1915–9

    Article  PubMed  CAS  Google Scholar 

  35. Tullius SG, Pratschke J, Strobelt V, et al. ATG versus basiliximab induction therapy in renal allograft recipients receiving a dual immunosuppressive regimen: one-year results. Transplant Proc 2003 Sep; 35(6): 2100–1

    Article  PubMed  CAS  Google Scholar 

  36. Hanaway M, Woodle ES, Mulgaonkar S, et al. 12 Month results of a multi-center, randomized trial comparing three induction agents (alemtuzumab, thymoglobulin and basiliximab) with tacrolimus, mycophenolate mofetil and a rapid steroid withdrawal in renal transplantation [abstract no. 135]. Am J Transplant 2008 May; 8 Suppl. 2: 215

    Google Scholar 

  37. Mulgaonkar S, Hanaway M, Woodle ES, et al. Continuing 24 month results of a multicenter, randomized trial comparing three induction agents (alemtuzumab, thymoglobulin and basiliximab) with tacrolimus, mycophenolate mofetil and a rapid steroid withdrawal in renal transplantation [abstract no. 312]. Am J Transplant 2009 May 30; 9 Suppl. 2: 282

    Google Scholar 

  38. Vincenti F, Monaco A, Grinyo J, et al. Multicenter randomized prospective trial of steroid withdrawal in renal transplant recipients receiving basiliximab, cyclosporine microemulsion and mycophenolate mofetil. Am J Transplant 2003 Mar; 3(3): 306–11

    Article  PubMed  CAS  Google Scholar 

  39. Vincenti F, Schena FP, Paraskevas S, et al. A randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. Am J Transplant 2008 Feb; 8(2): 307–16

    Article  PubMed  CAS  Google Scholar 

  40. Vitko S, Klinger M, Salmela K, et al. Two corticosteroid-free regimens —tacrolimus monotherapy after basiliximab administration and tacroli-mus/mycophenolate mofetil — in comparison with a standard triple regimen in renal transplantation: results of the Atlas study. Transplantation 2005 Dec 27; 80(12): 1734–41

    Article  PubMed  CAS  Google Scholar 

  41. Kumar MS, Xiao SG, Fyfe B, et al. Steroid avoidance in renal transplantation using basiliximab induction, cyclosporine-based immunosuppression and protocol biopsies. Clin Transplant 2005 Feb; 19(1): 61–9

    Article  PubMed  Google Scholar 

  42. Nematalla AH, Bakr MA, Gheith OA, et al. Steroid-avoidance immunosuppression regimen in live-donor renal allotransplant recipients: a prospective, randomized, controlled study. Exp Clin Transplant 2007 Dec; 5(2): 673–9

    PubMed  Google Scholar 

  43. Andres A, Marcen R, Valdes F, et al. A randomized trial of basiliximab with three different patterns of cyclosporin A initiation in renal transplant from expanded criteria donors and at high risk of delayed graft function. Clin Transplant 2009 Jan; 23(1): 23–32

    Article  PubMed  Google Scholar 

  44. Budde K, Bosmans JL, Sennesael J, et al. Reduced-exposure cyclosporine is safe and efficacious in de novo renal transplant recipients treated with enteric-coated mycophenolic acid and basiliximab. Clin Nephrol 2007 Mar; 67(3): 164–75

    PubMed  CAS  Google Scholar 

  45. Cibrik D, Meier-Kriesche HU, Bresnahan B, et al. Renal function with cyclosporine C2 monitoring, enteric-coated mycophenolate sodium and basiliximab: a 12-month randomized trial in renal transplant recipients. Clin Transplant 2007 Mar; 21(2): 192–201

    Article  PubMed  Google Scholar 

  46. Hernandez D, Miquel R, Porrini E, et al. Randomized controlled study comparing reduced calcineurin inhibitors exposure versus standard cyclosporine-based immunosuppression. Transplantation 2007 Sep 27; 84(6): 706–14

    Article  PubMed  CAS  Google Scholar 

  47. Salvadori M, Scolari MP, Stefoni S, et al. Randomized trial of sodium mycophenolate and basiliximab in combination with reduced or standard cyclosporine exposure in old recipients of kidney transplants from deceased donors [abstract no. 108]. Transplantation 2008 Aug 11; 86Suppl. 2: 39

    Article  Google Scholar 

  48. Thistlethwaite JR Jr, Nashan B, Hall M, et al. Reduced acute rejection and superior 1-year renal allograft survival with basiliximab in patients with diabetes mellitus. Transplantation 2000 Sep 15; 70(5): 784–90

    Article  PubMed  CAS  Google Scholar 

  49. Heldal K, Hartmann A, Leivestad T, et al. Clinical outcomes in elderly kidney transplant recipients are related to acute rejection episodes rather than pretransplant comorbidity. Transplantation 2009 Apr 15; 87(7): 1045–51

    Article  PubMed  Google Scholar 

  50. Offner G, Toenshoff B, Hocker B, et al. Efficacy and safety of basiliximab in pediatric renal transplant patients receiving cyclosporine, mycophenolate mofetil, and steroids. Transplantation 2008 Nov 15; 86(9): 1241–8

    Article  PubMed  CAS  Google Scholar 

  51. Grenda R, Watson A, Vondrak K, et al. A prospective, randomized, multi-center trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. Am J Transplant 2006 Jul; 6(7): 1666–72

    Article  PubMed  CAS  Google Scholar 

  52. Webb NJ, Prokurat S, Vondrak K, et al. Multicentre prospective randomised trial of tacrolimus, azathioprine and prednisolone with or without basiliximab: two-year follow-up data. Pediatr Nephrol 2009 Jan; 24(1): 177–82

    Article  PubMed  Google Scholar 

  53. Koch M, Becker T, Lueck R, et al. Basiliximab induction therapy in kidney transplantation: benefits for long term allograft function after 10 years? Biologics 2009; 3: 51–6

    PubMed  CAS  Google Scholar 

  54. Sheashaa HA, Bakr MA, Ismail AM, et al. Basiliximab reduces the incidence of acute cellular rejection in live-related-donor kidney transplantation: a three-year prospective randomized trial. J Nephrol 2003; 16: 393–8

    PubMed  CAS  Google Scholar 

  55. Sheashaa HA, Bakr MA, Ismail AM, et al. Basiliximab induction therapy for live donor kidney transplantation: a long-term follow-up of prospective randomized controlled study. Clin Exp Nephrol 2008 Oct; 12(5): 376–81

    Article  PubMed  Google Scholar 

  56. Sheashaa HA, Bakr MA, Ismail AM, et al. Long-term evaluation of basiliximab induction therapy in live donor kidney transplantation: a five-year prospective randomized study. Am J Nephrol 2005 May; 25(3): 221–5

    Article  PubMed  CAS  Google Scholar 

  57. Adu D, Cockwell P, Ives NJ, et al. Interleukin-2 receptor monoclonal antibodies in renal transplantation: meta-analysis of randomised trials. BMJ 2003 Apr 12; 326(7393): 789–93

    Article  PubMed  CAS  Google Scholar 

  58. Keown PA, Balshaw R, Khorasheh S, et al. Meta-analysis of basiliximab for immunoprophylaxis in renal transplantation. Biodrugs 2003; 17(4): 271–9

    Article  PubMed  CAS  Google Scholar 

  59. Webster AC, Playford EG, Higgins G, et al. Interleukin 2 receptor antagonists for renal transplant recipients: a meta-analysis of randomized trials. Transplantation 2004; 77(2): 166–76

    Article  PubMed  CAS  Google Scholar 

  60. Shah MH, Bokhari MZ, Bokhari MT, et al. Safety and efficacy of basiliximab for the prevention of acute rejection in kidney transplant recipients. Transplant Proc 2003 Nov; 35(7): 2737–8

    Article  PubMed  CAS  Google Scholar 

  61. Lee BM, Oh CK, Jin SH, et al. Effect of basiliximab on renal allograft rejection within 1 year after transplantation. Transplant Proc 2006 Sep; 38(7): 2025–8

    Article  PubMed  CAS  Google Scholar 

  62. Jorge S, Guerra J, Silva S, et al. Induction immunosuppressive therapy in renal transplantation: does basiliximab make the difference? Transplant Proc 2008 Apr; 40(3): 693–6

    Article  PubMed  CAS  Google Scholar 

  63. Goncalves LF, Ribeiro AR, Berdichevski R, et al. Basiliximab improves graft survival in renal transplant recipients with delayed graft function. Transplant Proc 2007 Mar; 39(2): 437–8

    Article  PubMed  CAS  Google Scholar 

  64. Cho WH, Lee HJ, Kim HT, et al. Basiliximab does not reduce the early rejection incidence in high-risk kidney recipients under tacrolimus-based immunosuppression. Transplant Proc 2008 Sep; 40(7): 2234–6

    Article  PubMed  CAS  Google Scholar 

  65. Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 1999 Apr; 67(7): 1011–8

    Article  PubMed  CAS  Google Scholar 

  66. Al Najjar A, Etienne I, Le Pogamp P, et al. Long-term results of monoclonal anti-Il2-receptor antibody versus polyclonal antilymphocyte antibodies as induction therapy in renal transplantation. Transplant Proc 2006 Sep; 38(7): 2298–9

    Article  CAS  Google Scholar 

  67. Pascher A, Ulrich F, Kohler S, et al. ATG versus basiliximab induction therapy in kidney allograft recipients receiving a dual immunosuppressive regimen: six-year results [abstract no. 800]. 22nd International Congress of the Transplantation Society 2008 Aug 14; 86(2 Suppl.): 279

    Google Scholar 

  68. Brennan DC, Schnitzler M. 5 Year outcomes in a randomized trial comparing rabbit antithymocyte globulin and basiliximab in kidney transplant recipients: linking clinical trial data with registry data [abstract no. 798]. 22nd International Congress of the Transplantation Society 2008 Aug 14; 86(2 Suppl.): 278

    Google Scholar 

  69. Haririan A, Morawski K, Sillix DH, et al. Induction therapy with basiliximab versus thymoglobulin in African-American kidney transplant recipients. Transplantation 2005 Mar 27; 79(6): 716–21

    Article  PubMed  CAS  Google Scholar 

  70. Willoughby LM, Schnitzler MA, Brennan DC, et al. Early outcomes of thymoglobulin and basiliximab induction in kidney transplantation: application of statistical approaches to reduce bias in observational comparisons. Transplantation 2009 May 27; 87(10): 1520–9

    Article  PubMed  CAS  Google Scholar 

  71. Gavela Martinez E, Sancho Calabuig A, Escudero Quesada V, et al. Induction treatment with low-dose thymoglobulin or basiliximab in renal transplants from older donors. Transplant Proc 2008 Nov; 40(9): 2900–2

    Article  CAS  Google Scholar 

  72. Yang SL, Wang D, Wu WZ, et al. Comparison of single bolus ATG and basiliximab as induction therapy in presensitized renal allograft recipients receiving tacrolimus-based immunosuppressive regimen. Transpl Immunol 2008 Jan; 18(3): 281–5

    Article  PubMed  CAS  Google Scholar 

  73. Taber DJ, Weimert NA, Henderson F, et al. Long-term efficacy of induction therapy with anti-interleukin-2 receptor antibodies or thymoglobulin compared with no induction therapy in renal transplantation. Transplant Proc 2008 Dec; 40(10): 3401–7

    Article  PubMed  CAS  Google Scholar 

  74. Patolla V, Zhong X, Reed GW, et al. Efficacy of anti-IL-2 receptor antibodies compared to no induction and to antilymphocyte antibodies in renal transplantation. Am J Transplant 2007; 7: 1832–41

    Article  Google Scholar 

  75. Knight RJ, Kerman RH, Schoenberg L, et al. The selective use of basiliximab versus thymoglobulin in combination with sirolimus for cadaveric renal transplant recipients at low risk versus high risk for delayed graft function. Transplantation 2004 Sep 27; 78(6): 904–10

    Article  PubMed  CAS  Google Scholar 

  76. Weng RR, Piper M, Foster CE. Rabbit anti-thymocyte globulin versus basiliximab in deceased donor renal transplants using a risk-adjusted protocol [abstract no. 1758]. Am J Transplant 2009; 9(2 Suppl.): 676

    Google Scholar 

  77. Gabardi S, Martin S, Filkins B, et al. Induction therapy with rabbit antithymocyte globulin versus basiliximab and early steroid withdrawal in renal transplantation [abstract no. 1757]. Am J Transplant 2009; 9(2 Suppl.): 675–6

    Google Scholar 

  78. Gurk-Turner C, Baig M, Munivenkatappa RB, et al. Superior renal allograft survival and decreased rejection with alemtuzumab induction compared to rabbit anti-thymocyte globulin or basiliximab [abstract no. 1754]. Am J Transplant 2009; 9(2 Suppl.): 675

    Google Scholar 

  79. Kaufman DB, Leventhal JR, Axelrod D, et al. Alemtuzumab induction and prednisone-free maintenance immunotherapy in kidney transplantation: comparison with basiliximab induction: long-term results. Am J Transplant 2005 Oct; 5(10): 2539–48

    Article  PubMed  CAS  Google Scholar 

  80. Chowdhury S, Kode RK, Ranganna K, et al. Induction strategy using basiliximab combined with mycophenolate MMF and immediate low-dose cyclosporin is steroid sparing and more effective than OKT3. Transplant Proc 2001 Feb; 33(1-2): 1057–8

    Article  PubMed  CAS  Google Scholar 

  81. Kumar AM, Fa K, Vankawala R, et al. Simulect, calcineurin inhibitor, mycophenolate mofetil, and prednisone is more effective than OKT3, calcineurin inhibitor, hycophendate mofetil, and prednisone in African American kidney recipients in reducing acute rejections and prolonging graft survival. Transplant Proc 2001 Nov; 33(7-8): 3195–6

    Article  PubMed  CAS  Google Scholar 

  82. Neamatalla AH, Bakr MA, Elagroudy AE, et al. Improving quality of life after steroid avoidance immunosuppression regimen in live donor renal allotransplant receipients: a prospective randomized controlled study single center experience (two year follow up) [abstract no. 163]. 13th Congress of the European Society for Organ Transplantation and the 15th European Transplant Coordinators Organization; 2007 Sep 29–Oct 3; Prague

  83. Teraoka S, Sato S, Sekijima M, et al. Comparative study of clinical outcome in kidney transplantation between early steroid withdrawal protocol using basiliximab, calcineurin inhibitor, and mycophenolate mofetil and triple regimen consisting of calcineurin inhibitor, mycophenolate mofetil, and steroid. Transplant Proc 2005 Mar; 37(2): 791–4

    Article  PubMed  CAS  Google Scholar 

  84. Woodle ES, Vincenti F, Lorber MI, et al. A multicenter pilot study of early (4-day) steroid cessation in renal transplant recipients under Simulect, tacrolimus and sirolimus. Am J Transplant 2005 Jan; 5(1): 157–66

    Article  PubMed  CAS  Google Scholar 

  85. Kovac D, Kotnik V, Kandus A. Basiliximab and mycophenolate mofetil in combination with low-dose cyclosporine and methylprednisolone effectively prevent acute rejection in kidney transplant recipients. Transplant Proc 2005 Dec; 37(10): 4230–4

    Article  PubMed  CAS  Google Scholar 

  86. Tojimbara T, Sato S, Koyama I, et al. Cyclosporine-sparing effect of basiliximab in renal transplant recipients with mycophenolate mofetil. Transplant Proc 2005 Mar; 37(2): 895–8

    Article  PubMed  CAS  Google Scholar 

  87. Balbontin F, Kiberd B, Fraser A, et al. Basiliximab lowers the cyclosporine therapeutic threshold in the early post-kidney transplant period. Clin Transplant 2005 Apr; 19(2): 225–9

    Article  PubMed  CAS  Google Scholar 

  88. Miura M, Harada H, Fukuzawa N, et al. Quadruple immunosuppression with basiliximab, tacrolimus, mycophenolate mofetil and prednisone is safe and effective for renal transplantation. Clin Transplant 2005; 19 Suppl. 14: 54–8

    Article  Google Scholar 

  89. Guba M, Rentsch M, Wimmer CD, et al. Calcineurin-inhibitor avoidance in elderly renal allograft recipients using ATG and basiliximab combined with mycophenolate mofetil. Transpl Int 2008 Jul; 21(7): 637–45

    Article  PubMed  CAS  Google Scholar 

  90. Duzova A, Buyan N, Bakkaloglu M, et al. Triple immunosuppression with or without basiliximab in pediatric renal transplantation: acute rejection rates at one year. Transplant Proc 2003 Dec; 35(8): 2878–80

    Article  PubMed  CAS  Google Scholar 

  91. Pape L, Strehlau J, Henne T, et al. Single centre experience with basiliximab in paediatric renal transplantation. Nephrol Dial Transplant 2002 Feb; 17(2): 276–80

    Article  PubMed  CAS  Google Scholar 

  92. Ojogho O, Sahney S, Cutler D, et al. Mycophenolate mofetil in pediatric renal transplantation: non-induction vs. induction with basiliximab. Pediatr Transplant 2005 Feb; 9(1): 80–3

    Article  PubMed  CAS  Google Scholar 

  93. Swiatecka-Urban A, Garcia C, Feuerstein D, et al. Basiliximab induction improves the outcome of renal transplants in children and adolescents. Pediatr Nephrol 2001 Sep; 16(9): 693–6

    Article  PubMed  CAS  Google Scholar 

  94. Clark G, Walsh G, Deshpande P, et al. Improved efficacy of basiliximab over antilymphocyte globulin induction therapy in paediatric renal transplantation. Nephrol Dial Transplant 2002 Jul; 17(7): 1304–9

    Article  PubMed  CAS  Google Scholar 

  95. Baron PW, Ojogho ON, Yorgin P, et al. Comparison of outcomes with low-dose anti-thymocyte globulin, basiliximab or no induction therapy in pediatric kidney transplant recipients: a retrospective study. Pediatr Transplant 2008 Feb; 12(1): 32–9

    Article  PubMed  CAS  Google Scholar 

  96. Delucchi A, Valenzuela M, Ferrario M, et al. Early steroid withdrawal in pediatric renal transplant on newer immunosuppressive drugs. Pediatr Transplant 2007 Nov; 11(7): 743–8

    Article  PubMed  CAS  Google Scholar 

  97. Oberholzer J, John E, Lumpaopong A, et al. Early discontinuation of steroids is safe and effective in pediatric kidney transplant recipients. Pediatr Transplant 2005 Aug; 9(4): 456–63

    Article  PubMed  Google Scholar 

  98. Valenzuela M, Delucchi A, Ferrario M, et al. Early steroid withdrawal in pediatric renal transplantation at a single center: preliminary report. Transplant Proc 2008 Nov; 40(9): 3237–40

    Article  PubMed  CAS  Google Scholar 

  99. Montini G, Murer L, Ghio L, et al. One-year results of basiliximab induction and tacrolimus associated with sequential steroid and MMF treatment in pediatric kidney transplant recipient. Transpl Int 2005 Jan; 18(1): 36–42

    Article  PubMed  CAS  Google Scholar 

  100. McDonald RA, Smith JM, Ho M, et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant 2008 May; 8(5): 984–9

    Article  PubMed  CAS  Google Scholar 

  101. Ramirez CB, Marino IR. The role of basiliximab induction therapy in organ transplantation. Expert Opin Biol Ther 2007 Jan; 7(1): 137–48

    Article  PubMed  CAS  Google Scholar 

  102. National Institute for Clinical Excellence. Immunosuppressive therapy for renal transplantation in adults [online]. Available from URL:http://www.nice.org.uk/nicemedia/pdf/TA085guidance.pdf[Accessed 2009 Oct 12]

  103. National Institute for Clinical Excellence. Immunosuppressive therapy for renal transplantation in children and adolescents [online]. Available from URL:http://www.nice.org.uk/nicemedia/pdf/TA099guidance.pdf[Accessed 2009 Oct 12]

  104. Nashan B. Antibody induction therapy in renal transplant patients receiving calcineurin-inhibitor immunosuppressive regimens: a comparative review. Biodrugs 2005; 19(1): 39–46

    Article  PubMed  CAS  Google Scholar 

  105. Webster AC, Playford EG, Higgins GY, et al. Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database Syst Rev 2009; (3): CD003897

    Google Scholar 

  106. Knoll G. Trends in kidney transplantation over the past decade. Drugs 2006; 68 Suppl. 1: 3–10

    Google Scholar 

  107. Matas AJ. Minimization of steroids in kidney transplantation. Transpl Int 2009; 22: 38–48

    Article  PubMed  Google Scholar 

  108. Webster AC, Lee VWS, Chapman JR, et al. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev 2006; (2): CD004290

    PubMed  Google Scholar 

  109. Flechner SM. Sirolimus in kidney transplantation indications and practical guidelines: de novo sirolimus-based therapy without calcineurin inhibitors. Transplantation 2009 Apr; 87(8 Suppl.): 1–6

    Article  CAS  Google Scholar 

  110. Sarwal MM. Out with the old, in with the new: immunosuppression minimization in children. Curr Opin Organ Transplant 2008; 13: 513–21

    Article  PubMed  Google Scholar 

  111. Lorber MI, Fastenau J, Wilson D, et al. A prospective economic evaluation of basiliximab (Simulect) therapy following renal transplantation. Clin Transplant 2000 Oct; 14(5): 479–85

    Article  PubMed  CAS  Google Scholar 

  112. Walters SJ, Whitfield M, Akehurst RL, et al. Pharmacoeconomic evaluation of Simulect prophylaxis in renal transplant recipients. Transplant Proc 2001 Nov 31; 33(7-8): 3187–91

    Article  PubMed  CAS  Google Scholar 

  113. Chilcott JB, Holmes MW, Walters S, et al. The economics of basiliximab (Simulect) in preventing acute rejection in renal transplantation. Transpl Int 2002 Oct; 15(9–10): 486–93

    Article  PubMed  Google Scholar 

  114. Morton RL, Howard K, Webster AC, et al. The cost-effectiveness of induction immunosuppression in kidney transplantation. Nephrol Dial Transplant 2009 Jul; 24(7): 2258–69

    Article  PubMed  Google Scholar 

  115. Emparan C, Wolters H, Laukotte M, et al. The cost-effectiveness of basiliximab induction in ‘old-to-old’ kidney transplant programs: Bayesian estimation, simulation, and uncertainty analysis. Transplant Proc 2005 Jun; 37(5): 2069–71

    Article  PubMed  CAS  Google Scholar 

  116. Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with bela-tacept in renal transplantation. N Engl J Med 2005 Aug; 353(8): 770–81

    Article  PubMed  CAS  Google Scholar 

  117. Wissing KM, Fomegne G, Broeders N, et al. HLA mismatches remain risk factors for acute kidney allograft rejection in patients receiving quadruple immunosuppression with anti-interleukin-2 receptor antibodies. Transplantation 2008 Feb 15; 85(3): 411–6

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate McKeage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKeage, K., McCormack, P.L. Basiliximab. BioDrugs 24, 55–76 (2010). https://doi.org/10.2165/11203990-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11203990-000000000-00000

Keywords

Navigation