Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Ahead of Print
    • Past Issues
    • Supplements
    • Article Type
  • Specialty
    • Articles by Specialty
  • CME/MOC
    • Articles
    • Calendar
  • Info For
    • Manuscript Submission
    • Authors & Reviewers
    • Subscriptions
    • About CCJM
    • Contact Us
    • Media Kit
  • Conversations with Leaders
  • Conference Coverage
    • Kidney Week 2024
    • CHEST 2024
    • ACR Convergence 2023
    • Kidney Week 2023
    • ObesityWeek 2023
    • IDWeek 2023
    • CHEST 2023
    • MDS 2023
    • IAS 2023
    • ACP 2023
    • AAN 2023
    • ACC / WCC 2023
    • AAAAI Meeting 2023
    • ACR Convergence 2022
    • Kidney Week 2022
    • AIDS 2022
  • Other Publications
    • www.clevelandclinic.org

User menu

  • Register
  • Log in

Search

  • Advanced search
Cleveland Clinic Journal of Medicine
  • Other Publications
    • www.clevelandclinic.org
  • Register
  • Log in
Cleveland Clinic Journal of Medicine

Advanced Search

  • Home
  • Content
    • Current Issue
    • Ahead of Print
    • Past Issues
    • Supplements
    • Article Type
  • Specialty
    • Articles by Specialty
  • CME/MOC
    • Articles
    • Calendar
  • Info For
    • Manuscript Submission
    • Authors & Reviewers
    • Subscriptions
    • About CCJM
    • Contact Us
    • Media Kit
  • Conversations with Leaders
  • Conference Coverage
    • Kidney Week 2024
    • CHEST 2024
    • ACR Convergence 2023
    • Kidney Week 2023
    • ObesityWeek 2023
    • IDWeek 2023
    • CHEST 2023
    • MDS 2023
    • IAS 2023
    • ACP 2023
    • AAN 2023
    • ACC / WCC 2023
    • AAAAI Meeting 2023
    • ACR Convergence 2022
    • Kidney Week 2022
    • AIDS 2022
1-Minute Consult

When does chest CT require contrast enhancement?

Camila Piza Purysko, MD, Rahul Renapurkar, MD and Michael A. Bolen, MD
Cleveland Clinic Journal of Medicine June 2016, 83 (6) 423-426; DOI: https://doi.org/10.3949/ccjm.83a.15037
Camila Piza Purysko
Imaging Institute, Cleveland Clinic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rahul Renapurkar
Imaging Institute, Cleveland Clinic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael A. Bolen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]

Computed tomography (CT) plays an important role in the diagnosis and treatment of many clinical conditions1 involving the chest wall, mediastinum, pleura, pulmonary arteries, and lung parenchyma. The need for enhancement with intravenous (IV) contrast depends on the specific clinical indication (Table 1).

View this table:
  • View inline
  • View popup
TABLE 1

Computed tomography (CT) with and without contrast: indications and protocols

EVALUATION OF SUSPECTED CANCER

CT is commonly used to diagnose, stage, and plan treatment for lung cancer, other primary neoplastic processes involving the chest, and metastatic disease.2 The need for contrast varies on a case-by-case basis, and the benefits of contrast should be weighed against the potential risks in each patient.

When the neoplasm has CT attenuation similar to that of adjacent structures (lymph nodes in the hilum, masses in the mediasti-num or chest wall), IV contrast can improve identification of the lesion and delineation of its margins and the relationship with adjacent structures (eg, vascular structures) (Figure 1).

FIGURE 1
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 1

In a patient with colon cancer undergoing a workup for metastases, axial CT without contrast (A) shows prominence of the right hilar region (arrow). Axial CT with contrast enhancement obtained subsequently (B and C) shows that this abnormality corresponds to right hilar lymphadenopathy partially encasing the right pulmonary artery (arrows).

CT without contrast for screening

The diagnostic algorithm for lung cancer screening is evolving. The US Preventive Services Task Force currently recommends low-dose CT without contrast, along with appropriate patient counseling, for patients with a history of smoking and an age range as detailed in the Task Force statement.3

Follow-up of a solitary pulmonary nodule also typically does not require contrast enhancement, though some investigators have reported high sensitivity with dynamic contrast enhancement of pulmonary nodules.4 This rep resents a rare clinical application of chest CT with and without contrast.

EVALUATION OF THORACIC VASCULAR DISEASE

For the assessment of vascular disease, CT in most cases requires IV contrast to delineate the vessel lumen. Pulmonary embolic disease is the third most common cause of acute car diovascular disease.5 CT pulmonary angiography is the most common way to assess for pulmonary embolic disease, as it is accurate, fast, and widely available, and can assess alternate pathologies in cases of undifferentiated chest pain. Contrast enhancement of the pulmonary arteries is key, as embolic disease is identified as abnormal filling defects within the pulmonary arteries (Figure 2).

FIGURE 2
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 2

In a 79-year-old patient with chronic thromboembolic pulmonary hypertension, CT angiography of the pulmonary artery (A) shows weblike (red arrow) and partially calcified filling defects (yellow arrow), as well as diffuse mild mosaic attenuation of lung parenchyma (B).

Contrast enhancement is also used to evaluate superior vena cava syndrome. At our institution, the CT protocol includes concomitant injections in the upper-extremity veins, with imaging timed for venous phase enhancement (pulmonary venogram). In cases of suspected arteriovenous malformation, a protocol similar to that used for suspected pulmonary embolus is used (Figure 3), although in some instances, the imaging features of arteriovenous malformation may be detectable without IV contrast.

FIGURE 3
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 3

CT pulmonary angiography with intravenous contrast in a patient being evaluated for arteriovenous malformation. Maximum-intensity projection images reconstructed in the axial (A) and coronal (B) planes show bilateral arteriovenous malformations with corresponding feeding arteries (white arrows) and draining veins (black arrows).

EVALUATION OF PULMONARY PARENCHYMAL DISEASE

Infection, inflammation, and edema of the lung parenchyma are usually well depicted on CT without contrast enhancement. However, contrast may be helpful if there are concerns about complications such as chest wall involvement, where contrast enhancement may help further delineate the extent of complications.

Assessment of interstitial lung disease does not require use of IV contrast; rather, a tailored protocol with thinner slices and non-contiguous expiratory images can be used to evaluate for air-trapping and dynamic airway compromise (Figure 4). Evaluation of chronic obstructive pulmonary disease also does not require IV contrast.

FIGURE 4
  • Download figure
  • Open in new tab
  • Download powerpoint
FIGURE 4

CT without contrast in a patient with a history of interstitial lung disease and right lung transplant shows the patent but partially narrowed anastomotic site of the right bronchus (A) (red arrow). In B, the native left lung is small, with evidence of bronchiectasis, bronchiolectasis, and areas of honeycombing (black arrow). In C, the transplanted lung is notable for areas of air trapping in the right upper lobe on expiratory images (blue arrow), which is associated with central airway narrowing.

EVALUATION OF THE PLEURA

In pleural effusion, CT assessment for the presence, location, and extent of the effusion does not require contrast. However, contrast enhancement is used to evaluate suspected or known exudative effusions and empyema.6 It also aids the evaluation of metastatic or primary malignancy of the pleura, particularly in cases of occult disease, as enhancement and thickening of the pleura are of diagnostic interest.

EVALUATION OF AIRWAY DISEASE

Diseases of the large airway, such as stenosis and thickening, and diseases of the small airways, such as bronchiolitis, typically do not require contrast enhancement. At our institution, to assess dynamic airway narrowing, we use a dedicated airway protocol, including inspiratory and expiratory phases and multi-planar reformatted images.

EVALUATION OF STERNAL AND MEDIASTINAL INFECTIONS

Postoperative sternal wound infections are not uncommon and range from cellulitis to frank osteomyelitis. Mediastinitis may likewise be iatrogenic or may spread from the oropharynx. CT with contrast can help to depict infection of the chest wall or mediastinum and in some instances can also delineate the route of spread.7

TYPES OF IV CONTRAST MEDIA

Contrast media used in CT contain iodine, which causes increased absorption and scattering of radiation in body tissues and blood. Other contrast media, such as those used for magnetic resonance imaging or barium enemas, do not contain iodine. This absorption and scattering in turn results in higher CT attenuation values, or “enhancement” on CT images. The extent of enhancement depends on the amount and rate of contrast material administered, as well as on patient factors (eg, tissue vascularity, permeability, interstitial space) and the energy (tube voltage) of the incident x-rays.8

Adverse reactions

Contrast materials are generally safe; however, as with any pharmaceutical, there is the potential for adverse reactions. These reactions are relatively rare and are usually mild but occasionally can be severe.9 Anaphylactoid reactions have an unclear etiology but mimic allergic reactions, and they are more likely to occur in patients with a previous reaction to contrast and in patients with asthma or cardiovascular or renal disease.

Nonanaphylactoid reactions are dependent on contrast osmolality and on the volume and route of injection (unlike anaphylactoid reactions).10 Typical symptoms include warmth, metallic taste, and nausea or vomiting.

Contrast-related nephrotoxicity has been reported,11 although this has been challenged more recently.12 Suspected risk factors for this complication include advanced age, cardiovascular disease, treatment with chemotherapy, elevated serum creatinine level, dehydration, diabetes, use of nonsteroidal anti-inflammatory medications, myeloma,13 renal disease, and kidney transplant.

Detailed protocols for premedication and management of contrast adverse reactions are beyond the scope of this review and the reader is advised to refer to dedicated manuals.10

ACKNOWLEDGMENT

We are grateful for the editorial assistance of Megan M. Griffiths, scientific writer for the Imaging Institute, Cleveland Clinic.

  • Copyright © 2016 The Cleveland Clinic Foundation. All Rights Reserved.

References

    1. Rubin GD
    . Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology 2014; 273(suppl 2):S45–S74.
    1. American College of Radiology
    . ACR-SCBT-MR-SPR practice parameter for the performance of thoracic computed tomography (CT). www.acr.org/~/media/ACR/Documents/PGTS/guidelines/CT_Thoracic.pdf. Accessed March 30, 2016.
    1. Moyer VA,
    2. US Preventive Services Task Force
    . Screening for lung cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med 2014; 160:330–338.
    1. Yi CA,
    2. Lee KS,
    3. Kim EA,
    4. et al
    . Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 2004; 233:191–199.
    1. Bolen MA,
    2. Renapurkar RD,
    3. Popovic ZB,
    4. et al
    . High-pitch ECG-synchronized pulmonary CT angiography versus standard CT pulmonary angiography: a prospective randomized study. AJR Am J Roentgenol 2013; 201:971–976.
    1. Kraus GJ
    . The split pleura sign. Radiology 2007; 243:297–298.
    1. Bae KT
    . Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010; 256:32–61.
    1. Capps EF,
    2. Kinsella JJ,
    3. Gupta M,
    4. Bhatki AM,
    5. Opatowsky MJ
    . Emergency imaging assessment of acute, nontraumatic conditions of the head and neck. Radiographics 2010; 30:1335–1352.
    1. Singh J,
    2. Daftary A
    . Iodinated contrast media and their adverse reactions. J Nucl Med Technol 2008; 36:69–74.
    1. ACR Committee on Drugs and Contrast Media
    . ACR Manual on Contrast Media. Version 10.1.2015. www.acr.org/~/media/37D84428BF1D4E1B9A3A2918DA9E27A3.pdf. Accessed March 29, 2016.
    1. Barrett BJ
    . Contrast nephrotoxicity. J Am Soc Nephrol 1994; 5:125–137.
    1. McDonald RJ,
    2. McDonald JS,
    3. Carter RE,
    4. et al
    . Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology 2014; 273:714–725.
    1. McCarthy CS,
    2. Becker JA
    . Multiple myeloma and contrast media. Radiology 1992; 183:519–521.

Navigate

  • Current Issue
  • Past Issues
  • Supplements
  • Article Type
  • Specialty
  • CME/MOC Articles
  • CME/MOC Calendar
  • Media Kit

Authors & Reviewers

  • Manuscript Submission
  • Authors & Reviewers
  • Subscriptions
  • About CCJM
  • Contact Us
  • Cleveland Clinic Center for Continuing Education
  • Consult QD

Share your suggestions!

Copyright © 2025 The Cleveland Clinic Foundation. All rights reserved. The information provided is for educational purposes only. Use of this website is subject to the website terms of use and privacy policy. 

Powered by HighWire