Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Ahead of Print
    • Past Issues
    • Supplements
    • Article Type
    • Specialty
  • CME/MOC
    • Articles
    • Calendar
  • Info For
    • Manuscript Submission
      • 1-Minute Consult
      • Commentary
      • Current Drug Therapy
      • Editorial
      • Guidelines to Practice
      • Interpreting Key Trials
      • Letter to the Editor
      • Review
      • Smart Testing
      • Symptoms to Diagnosis
      • The Clinical Picture
    • Authors & Reviewers
    • Subscriptions
    • About CCJM
    • Contact Us
  • COVID-19
    • Curbside Consults Overview
    • Pulmonary/ICU
    • Patient Subsets & Specific Organ Involvement
    • Therapies
    • Imaging & Procedures
    • Patients with Underlying Disease
    • Virus Background & Testing
    • Healthcare System Practice
  • Conference Coverage
    • ASH Annual Meeting
    • AHA Sessions 2020
    • IDWeek 2020
    • CHEST 2020
    • ADA 2020
    • ACC 2020
  • Advertise
    • Media Kit
    • Contact
  • Other Publications
    • www.clevelandclinic.org

User menu

  • Register
  • Log in

Search

  • Advanced search
Cleveland Clinic Journal of Medicine
  • Other Publications
    • www.clevelandclinic.org
  • Register
  • Log in
Cleveland Clinic Journal of Medicine

Advanced Search

  • Home
  • Content
    • Current Issue
    • Ahead of Print
    • Past Issues
    • Supplements
    • Article Type
    • Specialty
  • CME/MOC
    • Articles
    • Calendar
  • Info For
    • Manuscript Submission
    • Authors & Reviewers
    • Subscriptions
    • About CCJM
    • Contact Us
  • COVID-19
    • Curbside Consults Overview
    • Pulmonary/ICU
    • Patient Subsets & Specific Organ Involvement
    • Therapies
    • Imaging & Procedures
    • Patients with Underlying Disease
    • Virus Background & Testing
    • Healthcare System Practice
  • Conference Coverage
    • ASH Annual Meeting
    • AHA Sessions 2020
    • IDWeek 2020
    • CHEST 2020
    • ADA 2020
    • ACC 2020
  • Advertise
    • Media Kit
    • Contact
Review

Long-term consequences of prematurity

Cristina I. Pravia, MD and Merline Benny, MD
Cleveland Clinic Journal of Medicine December 2020, 87 (12) 759-767; DOI: https://doi.org/10.3949/ccjm.87a.19108
Cristina I. Pravia
Assistant Professor, Department of Internal Medicine University of Miami Miller School of Medicine, Miami, FL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cpravia@med.miami.edu
Merline Benny
Assistant Professor, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Due to a shortened period of in utero organ development, premature infants are at higher risk of chronic respiratory, cardiac, renal, and endocrine system disorders later in life. With more premature babies being born and more of them surviving, internists and primary care practitioners should be aware of their patient’s birth history and of the potential long-term effects of prematurity. Such understanding can lead to early detection of disease and targeted lifestyle modifications.

Footnotes

  • The authors report no relevant financial relationships which, in the context of their contributions, could be perceived as a potential conflict of interest.

  • Copyright © 2020 The Cleveland Clinic Foundation. All Rights Reserved.
View Full Text

REFERENCES

  1. ↵
    1. Chawanpaiboon S,
    2. Vogel JP,
    3. Moller AB, et al
    . Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 2019; 7(1):e37–e46. doi:10.1016/S2214-109X(18)30451-0
    OpenUrlCrossRefPubMed
  2. ↵
    1. Martin JA,
    2. Hamilton BE,
    3. Osterman MJK
    . Births in the United States, 2018. NCHS Data Brief 2019; (346):1–8. https://www.cdc.gov/nchs/products/databriefs/db346.htm. Accessed November 16, 2020.
  3. ↵
    1. Martin JA,
    2. Osterman MJK
    . Describing the increase in preterm births in the United States, 2014–2016. NCHS Data Brief 2018; (312):1–8. https://www.cdc.gov/nchs/data/databriefs/db312.pdf. Accessed November 16, 2020.
  4. ↵
    1. Stoll BJ,
    2. Hansen NI,
    3. Bell EF, et al
    . Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 2015; 314(10):1039–1051. doi:10.1001/jama.2015.10244
    OpenUrlCrossRefPubMed
  5. ↵
    1. Schaaf JM,
    2. Liem SM,
    3. Mol BW,
    4. Abu-Hanna A,
    5. Ravelli AC
    . Ethnic and racial disparities in the risk of preterm birth: a systematic review and meta-analysis. Am J Perinatol 2013; 30(6):433–450. doi:10.1055/s-0032-1326988
    OpenUrlCrossRef
  6. ↵
    1. Glass HC,
    2. Costarino AT,
    3. Stayer SA,
    4. Brett CM,
    5. Cladis F,
    6. Davis PJ
    . Outcomes for extremely premature infants. Anesth Analg 2015; 120(6):1337–1351. doi:10.1213/ANE.0000000000000705
    OpenUrlCrossRefPubMed
  7. ↵
    1. Serenius F,
    2. Ewald U,
    3. Farooqi A, et al
    . Neurodevelopmental outcomes among extremely preterm infants 6.5 years after active perinatal care in Sweden. JAMA Pediatr 2016; 170(10):954–963. doi:10.1001/jamapediatrics.2016.1210
    OpenUrlCrossRefPubMed
  8. ↵
    1. Zisk JL,
    2. Genen LH,
    3. Kirkby S,
    4. Webb D,
    5. Greenspan J,
    6. Dysart K
    . Do premature female infants really do better than their male counterparts? Am J Perinatol 2011; 28(3):241–246. doi:10.1055/s-0030-1268239
    OpenUrlCrossRefPubMed
  9. ↵
    1. Barker DJ
    . The fetal and infant origins of adult disease. BMJ 1990; 301(6761):1111. doi:10.1136/bmj.301.6761.1111
    OpenUrlFREE Full Text
  10. ↵
    1. Raju TNK,
    2. Pemberton VL,
    3. Saigal S, et al
    . Long-term healthcare outcomes of preterm birth: an executive summary of a conference sponsored by the National Institutes of Health. J Pediatr 2017; 181:309–318.e1. doi:10.1016/j.jpeds.2016.10.015
    OpenUrlCrossRef
  11. ↵
    1. Bayman E,
    2. Drake AJ,
    3. Piyasena C
    . Prematurity and programming of cardiovascular disease risk: a future challenge for public health? Arch Dis Child Fetal Neonatal Ed 2014; 99(6):F510–F514. doi:10.1136/archdischild-2014-306742
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Sullivan MC,
    2. Winchester SB,
    3. Msall ME
    . Prematurity and cardiovascular risk at early adulthood. Child Care Health Dev 2019; 45(1):71–78. doi:10.1111/cch.12616
    OpenUrlCrossRef
  13. ↵
    1. Crump C,
    2. Sundquist K,
    3. Sundquist J,
    4. Winkleby MA
    . Gestational age at birth and mortality in young adulthood. JAMA 2011; 306(11):1233–1240. doi:10.1001/jama.2011.1331
    OpenUrlCrossRefPubMed
  14. ↵
    1. Crump C,
    2. Winkleby MA,
    3. Sundquist J,
    4. Sundquist K
    . Prevalence of survival without major comorbidities among adults born prematurely. JAMA 2019; 322(16):1580–1588. doi:10.1001/jama.2019.15040
    OpenUrlCrossRef
  15. ↵
    1. Bolton CE,
    2. Bush A,
    3. Hurst JR,
    4. Kotecha S,
    5. McGarvey L
    . Lung consequences in adults born prematurely. Thorax 2015; 70(6):574–580. doi:10.1136/thoraxjnl-2014-206590
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Goss KN,
    2. Beshish AG,
    3. Barton GP, et al
    . Early pulmonary vascular disease in young adults born preterm. Am J Respir Crit Care Med 2018; 198(12):1549–1558. doi:10.1164/rccm.201710-2016OC
    OpenUrlCrossRefPubMed
  17. ↵
    1. Mourani PM,
    2. Sontag MK,
    3. Younoszai A, et al
    . Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med 2015; 191(1):87–95. doi:10.1164/rccm.201409-1594OC
    OpenUrlCrossRefPubMed
  18. ↵
    1. Naumburg E,
    2. Söderström L
    . Increased risk of pulmonary hypertension following premature birth. BMC Pediatr 2019; 19(1):288. doi:10.1186/s12887-019-1665-6
    OpenUrlCrossRef
  19. ↵
    1. Bertagnolli M,
    2. Luu TM,
    3. Lewandowski AJ,
    4. Leeson P,
    5. Nuyt AM
    . Preterm birth and hypertension: is there a link? Curr Hypertens Rep 2016; 18(4):28. doi:10.1007/s11906-016-0637-6
    OpenUrlCrossRefPubMed
  20. ↵
    1. Luu TM,
    2. Rehman Mian MO,
    3. Nuyt AM
    . Long-term impact of preterm birth: neurodevelopmental and physical health outcomes. Clin Perinatol 2017; 44(2):305–314. doi:10.1016/j.clp.2017.01.003
    OpenUrlCrossRefPubMed
  21. ↵
    1. Been JV,
    2. Lugtenberg MJ,
    3. Smets E, et al
    . Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med 2014; 11(1):e1001596. doi:10.1371/journal.pmed.1001596
    OpenUrlCrossRefPubMed
  22. ↵
    1. Kotecha SJ,
    2. Watkins WJ,
    3. Lowe J,
    4. Granell R,
    5. Henderson AJ,
    6. Kotecha S
    . Comparison of the associations of early-life factors on wheezing phenotypes in preterm-born children and term-born children. Am J Epidemiol 2019; 188(3):527–536. doi:10.1093/aje/kwy268
    OpenUrlCrossRef
  23. ↵
    1. Kotecha SJ,
    2. Edwards MO,
    3. Watkins WJ, et al
    . Effect of preterm birth on later FEV1; a systematic review and meta-analysis. Thorax 2013; 68(8):760–766. doi:10.1136/thoraxjnl-2012-203079
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Kotecha SJ,
    2. Dunstan FD,
    3. Kotecha S
    . Long term respiratory outcomes of late preterm-born infants. Semin Fetal Neonatal Med 2012; 17(2):77–81. doi:10.1016/j.siny.2012.01.004
    OpenUrlCrossRefPubMed
  25. ↵
    1. Näsänen-Gilmore P,
    2. Sipola-Leppänen M,
    3. Tikanmäki M, et al
    . Lung function in adults born preterm. PLoS One 2018; 13(10):e0205979. doi:10.1371/journal.pone.0205979
    OpenUrlCrossRef
  26. ↵
    1. Stritzke A,
    2. Thomas S,
    3. Amin H,
    4. Fusch C,
    5. Lodha A
    . Renal consequences of preterm birth. Mol Cell Pediatr 2017; 4(1):2. doi:10.1186/s40348-016-0068-0
    OpenUrlCrossRef
  27. ↵
    1. Eriksson JG,
    2. Salonen MK,
    3. Kajantie E,
    4. Osmond C
    . Prenatal growth and CKD in older adults: longitudinal findings from the Helsinki birth cohort study, 1924–1944. Am J Kidney Dis 2018; 71(1):20–26. doi:10.1053/j.ajkd.2017.06.030
    OpenUrlCrossRefPubMed
  28. ↵
    1. Carmody JB,
    2. Charlton JR
    . Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics 2013; 131(6):1168–1179. doi:10.1542/peds.2013-0009
    OpenUrlCrossRefPubMed
  29. ↵
    1. DeFreitas MJ,
    2. Katsoufis CP,
    3. Abitbol CL
    . Cardio-renal consequences of low birth weight and preterm birth. Progress in Pediatric Cardiology 2016; 41:83–88. doi:10.1016/j.ppedcard.2016.01.012
    OpenUrlCrossRef
  30. ↵
    1. Lewandowski AJ,
    2. Augustine D,
    3. Lamata P, et al
    . Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 2013; 127(2):197–206. doi:10.1161/CIRCULATIONAHA.112.126920
    OpenUrlAbstract/FREE Full Text
    1. Chehade H,
    2. Simeoni U,
    3. Guignard JP,
    4. Boubred F
    . Preterm birth: long term cardiovascular and renal consequences. Curr Pediatr Rev 2018; 14(4):219–226. doi:10.2174/1573396314666180813121652
    OpenUrlCrossRef
  31. ↵
    1. Benny M,
    2. Hernandez DR,
    3. Sharma M, et al
    . Neonatal hyperoxia exposure induces aortic biomechanical alterations and cardiac dysfunction in juvenile rats. Physiol Rep 2020; 8(1):e14334. doi:10.14814/phy2.14334
    OpenUrlCrossRef
  32. ↵
    1. Hovi P,
    2. Turanlahti M,
    3. Strang-Karlsson S, et al
    . Intima-media thickness and flow-mediated dilatation in the Helsinki study of very low birth weight adults. Pediatrics 2011; 127(2):e304–e311. doi:10.1542/peds.2010-2199
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Kowalski RR,
    2. Beare R,
    3. Doyle LW,
    4. Smolich JJ,
    5. Cheung MM; Victorian Infant Collaborative Study Group
    . Elevated blood pressure with reduced left ventricular and aortic dimensions in adolescents born extremely preterm. J Pediatr 2016; 172:75–80.e2. doi:10.1016/j.jpeds.2016.01.020
    OpenUrlCrossRef
  34. ↵
    1. Aye CYL,
    2. Lewandowski AJ,
    3. Lamata P, et al
    . Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm. Pediatr Res 2017; 82(1):36–46. doi:10.1038/pr.2017.96
    OpenUrlCrossRef
  35. ↵
    1. Huckstep OJ,
    2. Williamson W,
    3. Telles F, et al
    . Physiological stress elicits impaired left ventricular function in preterm-born adults. J Am Coll Cardiol 2018; 71(12):1347–1356. doi:10.1016/j.jacc.2018.01.046
    OpenUrlFREE Full Text
  36. ↵
    1. de Jong F,
    2. Monuteaux MC,
    3. van Elburg RM,
    4. Gillman MW,
    5. Belfort MB
    . Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 2012; 59(2):226–234. doi:10.1161/HYPERTENSIONAHA.111.181784
    OpenUrlCrossRefPubMed
  37. ↵
    1. Cook NR,
    2. Cohen J,
    3. Hebert PR,
    4. Taylor JO,
    5. Hennekens CH
    . Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med 1995; 155(7):701–709. pmid:7695458
    OpenUrlCrossRefPubMed
  38. ↵
    1. South AM,
    2. Nixon PA,
    3. Chappell MC, et al
    . Association between preterm birth and the renin-angiotensin system in adolescence: influence of sex and obesity. J Hypertens 2018; 36(10):2092–2101. doi:10.1097/HJH.0000000000001801
    OpenUrlCrossRefPubMed
  39. ↵
    1. Sehgal A,
    2. Krishnamurthy MB,
    3. Clark M,
    4. Menahem S
    . ACE inhibition for severe bronchopulmonary dysplasia—an approach based on physiology. Physiol Rep 2018; 6(17):e13821. doi:10.14814/phy2.13821
    OpenUrlCrossRef
  40. ↵
    1. Crump C,
    2. Howell EA,
    3. Stroustrup A,
    4. McLaughlin MA,
    5. Sundquist J,
    6. Sundquist K
    . Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr 2019; 173(8):736–743. doi:10.1001/jamapediatrics.2019.1327
    OpenUrlCrossRef
  41. ↵
    1. Carr H,
    2. Cnattingius S,
    3. Granath F,
    4. Ludvigsson JF,
    5. Edstedt Bonamy AK
    . Preterm birth and risk of heart failure up to early adulthood. J Am Coll Cardiol 2017; 69(21):2634–2642. doi:10.1016/j.jacc.2017.03.572
    OpenUrlFREE Full Text
  42. ↵
    1. Ream MA,
    2. Lehwald L
    . Neurologic consequences of preterm birth. Curr Neurol Neurosci Rep 2018; 18(8):48. doi:10.1007/s11910-018-0862-2
    OpenUrlCrossRef
  43. ↵
    1. Raju TNK,
    2. Buist AS,
    3. Blaisdell CJ,
    4. Moxey-Mims M,
    5. Saigal S
    . Adults born preterm: a review of general health and system-specific outcomes. Acta Paediatr 2017; 106(9):1409–1437. doi:10.1111/apa.13880
    OpenUrlCrossRefPubMed
  44. ↵
    1. Chen LW,
    2. Wang ST,
    3. Wang LW, et al
    . Behavioral characteristics of autism spectrum disorder in very preterm birth children. Mol Autism 2019; 10:32. doi:10.1186/s13229-019-0282-4
    OpenUrlCrossRef
  45. ↵
    1. Roggero P,
    2. Giannì ML,
    3. Garbarino F,
    4. Mosca F
    . Consequences of prematurity on adult morbidities. Eur J Intern Med 2013; 24(7):624–626. doi:10.1016/j.ejim.2013.01.011
    OpenUrlCrossRef
  46. ↵
    1. Bourke J,
    2. Wong K,
    3. Srinivasjois R, et al
    . Predicting long-term survival without major disability for infants born preterm. J Pediatr 2019; 215:90–97.e1. doi:10.1016/j.jpeds.2019.07.056
    OpenUrlCrossRef
  47. ↵
    1. Crane JD,
    2. Yellin SA,
    3. Ong FJ, et al
    . ELBW survivors in early adulthood have higher hepatic, pancreatic and subcutaneous fat. Sci Rep 2016; 6:31560. doi:10.1038/srep31560
    OpenUrlCrossRefPubMed
  48. ↵
    1. Crump C,
    2. Winkleby MA,
    3. Sundquist K,
    4. Sundquist J
    . Risk of diabetes among young adults born preterm in Sweden. Diabetes Care 2011; 34(5):1109–1113. doi:10.2337/dc10-2108
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Crump C,
    2. Sundquist J,
    3. Sundquist K
    . Preterm birth and risk of type 1 and type 2 diabetes: a national cohort study. Diabetologia 2020; 63(3):508–518. doi:10.1007/s00125-019-05044-z
    OpenUrlCrossRef
  50. ↵
    1. Mathai S,
    2. Derraik JG,
    3. Cutfield WS, et al
    . Increased adiposity in adults born preterm and their children. PLoS One 2013; 8(11):e81840. doi:10.1371/journal.pone.0081840
    OpenUrlCrossRefPubMed
  51. ↵
    1. Breukhoven PE,
    2. Kerkhof GF,
    3. Willemsen RH,
    4. Hokken-Koelega AC
    . Fat mass and lipid profile in young adults born preterm. J Clin Endocrinol Metab 2012; 97(4):1294–1302. doi:10.1210/jc.2011-2621
    OpenUrlCrossRefPubMed
  52. ↵
    1. Sipola-Leppänen M,
    2. Vääräsmäki M,
    3. Tikanmäki M, et al
    . Cardiometabolic risk factors in young adults who were born preterm. Am J Epidemiol 2015; 181(11):861–873. doi:10.1093/aje/kwu443
    OpenUrlCrossRefPubMed
  53. ↵
    1. Sipola-Leppänen M,
    2. Kajantie E
    . Should we assess cardiovascular risk in young adults born preterm? Curr Opin Lipidol 2015; 26(4):282–287. doi:10.1097/MOL.0000000000000190
    OpenUrlCrossRef
  54. ↵
    1. Wood CL,
    2. Wood AM,
    3. Harker C,
    4. Embleton ND
    . Bone mineral density and osteoporosis after preterm birth: the role of early life factors and nutrition. Int J Endocrinol 2013; 2013:902513. doi:10.1155/2013/902513
    OpenUrlCrossRef
  55. ↵
    1. Xie LF,
    2. Alos N,
    3. Cloutier A, et al
    . The long-term impact of very preterm birth on adult bone mineral density. Bone Rep 2018; 10:100189. doi:10.1016/j.bonr.2018.100189
    OpenUrlCrossRef
  56. ↵
    1. Crump C,
    2. Sundquist J,
    3. Winkleby MA,
    4. Sundquist K
    . Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study. Lancet Child Adolesc Health 2019; 3(6):408–417. doi:10.1016/S2352-4642(19)30108-7
    OpenUrlCrossRefPubMed
  57. ↵
    1. Bolton CE,
    2. Bush A,
    3. Hurst JR, et al
    . Are early life factors considered when managing respiratory disease? A British Thoracic Society survey of current practice. Thorax 2012; 67(12):1110. doi:10.1136/thoraxjnl-2012-202637
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Crump C
    . Birth history is forever: implications for family medicine. J Am Board Fam Med 2015; 28(1):121–123. doi:10.3122/jabfm.2015.01.130317
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Bonner R,
    2. Bountziouka V,
    3. Stocks J, et al
    . Birth data accessibility via primary care health records to classify health status in a multi-ethnic population of children: an observational study. NPJ Prim Care Respir Med 2015; 25:14112. doi:10.1038/npjpcrm.2014.112
    OpenUrlCrossRefPubMed
  60. ↵
    1. Kajantie E,
    2. Hovi P
    . Is very preterm birth a risk factor for adult cardiometabolic disease? Semin Fetal Neonatal Med 2014; 19(2):112–117. doi:10.1016/j.siny.2013.11.006
    OpenUrlCrossRefPubMed
  61. ↵
    1. Matinolli HM,
    2. Männistö S,
    3. Sipola-Leppänen M, et al
    . Food and nutrient intakes in young adults born preterm. Pediatr Res 2018; 83(3):589–596. doi:10.1038/pr.2017.301
    OpenUrlCrossRef
  62. ↵
    1. Kaseva N,
    2. Wehkalampi K,
    3. Hemiö K, et al
    . Diet and nutrient intake in young adults born preterm at very low birth weight. J Pediatr 2013; 163(1):43–48. doi:10.1016/j.jpeds.2012.12.076
    OpenUrlCrossRef
  63. ↵
    1. Tikanmäki M,
    2. Tammelin T,
    3. Sipola-Leppänen M, et al
    . Physical fitness in young adults born preterm. Pediatrics 2016; 137(1). doi:10.1542/peds.2015-1289
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Boivin A,
    2. Luo ZC,
    3. Audibert F, et al
    . Risk for preterm and very preterm delivery in women who were born preterm. Obstet Gynecol 2015; 125(5):1177–1184. doi:10.1097/AOG.0000000000000813
    OpenUrlCrossRef
  65. ↵
    1. Grobman WA,
    2. Rice MM,
    3. Reddy UM, et al
    . Labor induction versus expectant management in low-risk nulliparous women. N Engl J Med 2018; 379(6):513–523. doi:10.1056/NEJMoa1800566
    OpenUrlCrossRefPubMed

This article requires you to have a ccjm.org account to view the full text. If you already have an account, you may log in below to view this article along with all other CCJM content. If you do not have an account, register here. It’s free!

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

Registration is Now Required for Free Access to CCJM Content

Register once and log in for full access to articles and content. Click “Register” in the upper right corner and follow the simple instructions to create a new account.

If you are using a mobile device, click on the settings icon to access the Register link.

In this issue

Cleveland Clinic Journal of Medicine: 87 (12)
Cleveland Clinic Journal of Medicine
Vol. 87, Issue 12
1 Dec 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Cleveland Clinic Journal of Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Long-term consequences of prematurity
(Your Name) has sent you a message from Cleveland Clinic Journal of Medicine
(Your Name) thought you would like to see the Cleveland Clinic Journal of Medicine web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Long-term consequences of prematurity
Cristina I. Pravia, Merline Benny
Cleveland Clinic Journal of Medicine Dec 2020, 87 (12) 759-767; DOI: 10.3949/ccjm.87a.19108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Long-term consequences of prematurity
Cristina I. Pravia, Merline Benny
Cleveland Clinic Journal of Medicine Dec 2020, 87 (12) 759-767; DOI: 10.3949/ccjm.87a.19108
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Linkedin Share Button

Jump to section

  • Article
    • ABSTRACT
    • PREMATURITY: DEFINITIONS AND EPIDEMIOLOGY
    • WITH ADVANCES, IMPROVED SHORT-TERM SURVIVAL
    • HIDDEN LONG-TERM HEALTH EFFECTS
    • LATER SURVIVAL IMPACTED
    • PULMONARY SYSTEM
    • RENAL SYSTEM
    • CARDIOVASCULAR SYSTEM
    • CENTRAL NERVOUS SYSTEM
    • ENDOCRINE SYSTEM
    • BIRTH HISTORY SHOULD BE PART OF THE MEDICAL RECORD
    • PROMOTE A HEALTHY LIFESTYLE
    • WOULD SPECIAL SCREENING BE USEFUL?
    • PREVENTING FUTURE PREMATURITY
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Perioperative management of pregnant women undergoing nonobstetric surgery
  • Autonomous sensory meridian response: Your patients already know, do you?
Show more Review

Similar Articles

Subjects

  • Neurology
  • Preventive Care
  • Pulmonology
  • Women's Health
  • Nephrology
  • Men's Health
  • Cardiology
  • Endocrinology
  • Adolescent Medicine

Navigate

  • Current Issue
  • Past Issues
  • Supplements
  • Article Type
  • Specialty
  • CME/MOC Articles
  • CME/MOC Calendar
  • Media Kit
  • Advertise Contact

Info For

  • Manuscript Submission
  • Authors & Reviewers
  • Subscriptions
  • Advertisers
  • About CCJM
  • Contact Us
  • Cleveland Clinic Center for Continuing Education
  • Consult QD

Share your suggestions!

Copyright © 2021 The Cleveland Clinic Foundation. All rights reserved. The information provided is for educational purposes only. Use of this website is subject to the website terms of use and privacy policy. 

Powered by HighWire